Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Microbiome ; 12(1): 199, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407346

RESUMO

BACKGROUND: Processing environments can be an important source of pathogenic and spoilage microorganisms that cross contaminate meat and meat products. The aim of this study was to characterize the microbiome of raw materials, processing environments and end products from 19 facilities producing different meat products. RESULTS: The taxonomic profiles of the microbial communities evolved along processing, from raw materials to end products, suggesting that food contact (FC) surfaces play an important role in modulating the microbiome of final products. Some species persisted with the highest relative abundance in raw materials, food processing environments and/or in the final product, including species from the genera Pseudomonas, Staphylococcus, Brochothrix, Acinetobacter and Psychrobacter. Processing environments showed a very diverse core microbiota, partially shared with the products. Pseudomonas fragi and Pseudomonas sp. Lz4W (in all sample and facility types) and Brochothrix thermosphacta, Psychrobacter sp. and Psychrobacter sp. P11F6 (in raw materials, FC surfaces and end products) were prominent members of the core microbiota for all facilities, while Latilactobacillus sakei was found as a dominant species exclusively in end products from the facilities producing fermented sausages. Processing environments showed a higher amount of antimicrobial resistance genes and virulence factors than raw materials and end products. One thousand four hundred twenty-one medium/high-quality metagenome-assembled genomes (MAGs) were reconstructed. Of these, 274 high-quality MAGs (completeness > 90%) corresponded to 210 putative new species, mostly found in processing environments. For two relevant taxa in meat curing and fermentation processes (S. equorum and L. sakei, respectively), phylogenetic variation was observed associated with the specific processing facility under study, which suggests that specific strains of these taxa may be selected in different meat processing plants, likely contributing to the peculiar sensorial traits of the end products produced in them. CONCLUSIONS: Overall, our findings provide the most detailed metagenomics-based perspective up to now of the microbes that thrive in meat, meat products and associated environments and open avenues for future research activities to better understand the microbiome functionality and potential contribution to meat quality and safety. Video Abstract.


Assuntos
Bactérias , Manipulação de Alimentos , Microbiologia de Alimentos , Produtos da Carne , Microbiota , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Produtos da Carne/microbiologia , Microbiologia Ambiental , Carne/microbiologia , RNA Ribossômico 16S/genética , Animais , Filogenia
2.
NPJ Biofilms Microbiomes ; 10(1): 67, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095404

RESUMO

The resident microbiome in food industries may impact on food quality and safety. In particular, microbes residing on surfaces in dairy industries may actively participate in cheese fermentation and ripening and contribute to the typical flavor and texture. In this work, we carried out an extensive microbiome mapping in 73 cheese-making industries producing different types of cheeses (fresh, medium and long ripened) and located in 4 European countries. We sequenced and analyzed metagenomes from cheese samples, raw materials and environmental swabs collected from both food contact and non-food contact surfaces, as well as operators' hands and aprons. Dairy plants were shown to harbor a very complex microbiome, characterized by high prevalence of genes potentially involved in flavor development, probiotic activities, and resistance to gastro-intestinal transit, suggesting that these microbes may potentially be transferred to the human gut microbiome. More than 6100 high-quality Metagenome Assembled Genomes (MAGs) were reconstructed, including MAGs from several Lactic Acid Bacteria species and putative new species. Although microbial pathogens were not prevalent, we found several MAGs harboring genes related to antibiotic resistance, highlighting that dairy industry surfaces represent a potential hotspot for antimicrobial resistance (AR) spreading along the food chain. Finally, we identified facility-specific strains that can represent clear microbial signatures of different cheesemaking facilities, suggesting an interesting potential of microbiome tracking for the traceability of cheese origin.


Assuntos
Queijo , Probióticos , Queijo/microbiologia , Metagenoma , Microbiologia de Alimentos , Microbiota , Humanos , Indústria de Laticínios/métodos , Europa (Continente) , Metagenômica/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação
3.
Brain Behav Immun ; 122: 256-265, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39163908

RESUMO

BACKGROUND: Psychobiotic bacteria are probiotics able to influence stress-related behavior, sleep, and cognitive outcomes. Several in vitro and human studies were performed to assess their physiological potential, to find strains having psychotropic activity in humans, and to elucidate the metabolic pathways involved. In our previous in vitro study, we identified two strains Levilactobacillus brevis P30021 and Lactiplantibacillus plantarum P30025, able to produce GABA and acetylcholine, being promising candidates to provide an effect on mood and cognitive performance. AIM: To investigate the effects of probiotics in the alleviation on the cognitive performance of moderately stressed healthy adults. Secondary outcomes were related to mood improvement, production of GABA, glutamate, acetylcholine, and choline and modification of the microbiota composition. METHODS: A 12-week randomized, double-blind, placebo-controlled, cross-over study investigated the effects of a probiotic formulation (Levilactobacillus brevis P30021 and Lactiplantibacillus plantarum P30025) on psychological, memory, and cognition parameters in 44 (Probiotic = 44, Placebo = 43) adults with a mean age of 29 ± 5.7 years old by CogState Battery test. Subjects-inclusion criteria was a mild-moderate (18.7 ± 4.06) stress upon diagnosis using the DASS-42 questionnaire. RESULTS: Probiotic treatment had no effect on subjective stress measures. The probiotic formulation showed a significant beneficial effect on depressive symptoms by reducing cognitive reactivity to sad mood (p = 0.034). Rumination significantly improved after intake of the probiotic (p = 0.006), suggesting a potential benefit in reducing the negative cognitive effects associated with depression and improving overall mental health. When stratifying the treated subjects according to the response, we found an increase in the abundance of the probiotic genera in the gut microbiota of positive responders (p = 0.009 for Lactiplantibacillus and p = 0.004 for L.brevis). No relevant correlations were observed between the neurotransmitter concentration in the faecal sample, scores of LEIDS, DASS-42, and cognitive tests. CONCLUSION: We highlight the potential of this probiotic preparation to act as psycobiotics for the relief of negative mood feelings. The assessment of the psychotropic effects of dietary interventions in human participants has many challenges. Further interventional studies investigating the effect of these psychobiotic bacteria in populations with stressed-related disorders are required including longer period of intervention and larger sample size in order to verify the effects of the treatment on further stress-related indicators.


Assuntos
Afeto , Cognição , Estudos Cross-Over , Lactobacillus , Probióticos , Ácido gama-Aminobutírico , Humanos , Método Duplo-Cego , Adulto , Probióticos/farmacologia , Masculino , Cognição/fisiologia , Feminino , Ácido gama-Aminobutírico/metabolismo , Lactobacillus/metabolismo , Adulto Jovem , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Estresse Psicológico/microbiologia , Levilactobacillus brevis/metabolismo
4.
Cell ; 187(20): 5775-5795.e15, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39214080

RESUMO

Complex microbiomes are part of the food we eat and influence our own microbiome, but their diversity remains largely unexplored. Here, we generated the open access curatedFoodMetagenomicData (cFMD) resource by integrating 1,950 newly sequenced and 583 public food metagenomes. We produced 10,899 metagenome-assembled genomes spanning 1,036 prokaryotic and 108 eukaryotic species-level genome bins (SGBs), including 320 previously undescribed taxa. Food SGBs displayed significant microbial diversity within and between food categories. Extension to >20,000 human metagenomes revealed that food SGBs accounted on average for 3% of the adult gut microbiome. Strain-level analysis highlighted potential instances of food-to-gut transmission and intestinal colonization (e.g., Lacticaseibacillus paracasei) as well as SGBs with divergent genomic structures in food and humans (e.g., Streptococcus gallolyticus and Limosilactobabillus mucosae). The cFMD expands our knowledge on food microbiomes, their role in shaping the human microbiome, and supports future uses of metagenomics for food quality, safety, and authentication.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Humanos , Metagenoma/genética , Microbioma Gastrointestinal/genética , Microbiota/genética , Microbiologia de Alimentos , Metagenômica/métodos , Bactérias/genética , Bactérias/classificação
5.
Food Res Int ; 192: 114798, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147499

RESUMO

Water Buffalo Mozzarella (BM) is a typical cheese from Southern Italy with unique flavor profile and texture. It is produced following a traditional back-slopping procedure and received the Protected Designation of Origin (PDO) label. To better understand the link between the production area, the microbiome composition and the flavor profile of the products, we performed a multiomic characterization of PDO BM collected from 57 different dairies located in the two main PDO production area, i.e. Caserta (n = 35) and Salerno (n = 22). Thus, we assessed the microbiome by high-throughput shotgun metagenomic sequencing and the Volatile Organic Compounds (VOCs) by gas chromatography/mass spectrometry (GC/MS). Streptococcus thermophilus, Lactobacillus helveticus, and Lactobacillus delbrueckii subsp. delbrueckii were identified as the core microbiome present in all samples. However, the microbiome taxonomic profiles resulted in a clustering of the samples based on their geographical origin, also showing that BM from Caserta had a greater microbial diversity. Consistently, Caserta and Salerno samples also showed different VOC profiles. These results suggest that the microbiome and its specific metabolic activity are part of the terroir that shape BM specific features, linking this traditional product with the area of production, thus opening new clues for improving traceability and fraud protection of traditional products.


Assuntos
Búfalos , Queijo , Cromatografia Gasosa-Espectrometria de Massas , Microbiota , Paladar , Compostos Orgânicos Voláteis , Queijo/microbiologia , Queijo/análise , Animais , Compostos Orgânicos Voláteis/análise , Itália , Microbiologia de Alimentos , Lactobacillus helveticus , Streptococcus thermophilus/classificação
6.
Front Microbiol ; 15: 1393243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887708

RESUMO

Identifying the origin of a food product holds paramount importance in ensuring food safety, quality, and authenticity. Knowing where a food item comes from provides crucial information about its production methods, handling practices, and potential exposure to contaminants. Machine learning techniques play a pivotal role in this process by enabling the analysis of complex data sets to uncover patterns and associations that can reveal the geographical source of a food item. This study aims to investigate the potential use of explainable artificial intelligence for identifying the food origin. The case of study of Mozzarella di Bufala Campana PDO has been considered by examining the composition of the microbiota in each samples. Three different supervised machine learning algorithms have been compared and the best classifier model is represented by Random Forest with an Area Under the Curve (AUC) value of 0.93 and the top accuracy of 0.87. Machine learning models effectively classify origin, offering innovative ways to authenticate regional products and support local economies. Further research can explore microbiota analysis and extend applicability to diverse food products and contexts for enhanced accuracy and broader impact.

7.
Food Res Int ; 186: 114318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729711

RESUMO

The microbiome of surfaces along the beef processing chain represents a critical nexus where microbial ecosystems play a pivotal role in meat quality and safety of end products. This study offers a comprehensive analysis of the microbiome along beef processing using whole metagenomics with a particular focus on antimicrobial resistance and virulence-associated genes distribution. Our findings highlighted that microbial communities change dynamically in the different steps along beef processing chain, influenced by the specific conditions of each micro-environment. Brochothrix thermosphacta, Carnobacterium maltaromaticum, Pseudomonas fragi, Psychrobacter cryohalolentis and Psychrobacter immobilis were identified as the key species that characterize beef processing environments. Carcass samples and slaughterhouse surfaces exhibited a high abundance of antibiotic resistance genes (ARGs), mainly belonging to aminoglycosides, ß-lactams, amphenicols, sulfonamides and tetracyclines antibiotic classes, also localized on mobile elements, suggesting the possibility to be transmitted to human pathogens. We also evaluated how the initial microbial contamination of raw beef changes in response to storage conditions, showing different species prevailing according to the type of packaging employed. We identified several genes leading to the production of spoilage-associated compounds, and highlighted the different genomic potential selected by the storage conditions. Our results suggested that surfaces in beef processing environments represent a hotspot for beef contamination and evidenced that mapping the resident microbiome in these environments may help in reducing meat microbial contamination, increasing shelf-life, and finally contributing to food waste restraint.


Assuntos
Microbiologia de Alimentos , Microbiota , Carne Vermelha , Microbiota/genética , Carne Vermelha/microbiologia , Animais , Bovinos , Manipulação de Alimentos/métodos , Bactérias/genética , Bactérias/classificação , Metagenômica/métodos , Farmacorresistência Bacteriana/genética , Matadouros , Antibacterianos/farmacologia , Contaminação de Alimentos/análise , Resistência Microbiana a Medicamentos/genética , Embalagem de Alimentos
8.
Nat Commun ; 15(1): 4482, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802370

RESUMO

Environmental pollutants from different chemical families may reach the gut microbiome, where they can be metabolized and transformed. However, how our gut symbionts respond to the exposure to environmental pollution is still underexplored. In this observational, cohort study, we aim to investigate the influence of environmental pollution on the gut microbiome composition and potential activity by shotgun metagenomics. We select as a case study a population living in a highly polluted area in Campania region (Southern Italy), proposed as an ideal field for exposomic studies and we compare the fecal microbiome of 359 subjects living in areas with high, medium and low environmental pollution. We highlight changes in gut microbiome composition and functionality that were driven by pollution exposure. Subjects from highly polluted areas show higher blood concentrations of dioxin and heavy metals, as well as an increase in microbial genes related to degradation and/or resistance to these molecules. Here we demonstrate the dramatic effect that environmental xenobiotics have on gut microbial communities, shaping their composition and boosting the selection of strains with degrading capacity. The gut microbiome can be considered as a pivotal player in the environment-health interaction that may contribute to detoxifying toxic compounds and should be taken into account when developing risk assessment models. The study was registered at ClinicalTrials.gov with the identifier NCT05976126.


Assuntos
Poluentes Ambientais , Fezes , Microbioma Gastrointestinal , Xenobióticos , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Xenobióticos/metabolismo , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Feminino , Masculino , Fezes/microbiologia , Itália , Adulto , Pessoa de Meia-Idade , Exposição Ambiental/efeitos adversos , Metagenômica/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Estudos de Coortes , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Idoso , Poluição Ambiental/efeitos adversos , Biodegradação Ambiental
9.
Microbiol Res ; 281: 127634, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308902

RESUMO

Nutrient deficiency, natural enemies and litter autotoxicity have been proposed as possible mechanisms to explain species-specific negative plant-soil feedback (PSF). Another potential contributor to negative PSF is the plant released extracellular self-DNA during litter decay. In this study, we sought to comprehensively investigate these hypotheses by using Arabidopsis thaliana (L.) Heynh as a model plant in a feedback experiment. The experiment comprised a conditioning phase and a response phase in which the conditioned soils underwent four treatments: (i) addition of activated carbon, (ii) washing with tap water, (iii) sterilization by autoclaving, and (iv) control without any treatment. We evaluated soil chemical properties, microbiota by shotgun sequencing and the amount of A. thaliana extracellular DNA in the differently treated soils. Our results showed that washing and sterilization treatments mitigated the negative PSF effect. While shifts in soil chemical properties were not pronounced, significant changes in soil microbiota were observed, especially after sterilization. Notably, plant biomass was inversely associated with the content of plant self-DNA in the soil. Our results suggest that the negative PSF observed in the conditioned soil was associated to increased amounts of soilborne pathogens and plant self-DNA. However, fungal pathogens were not limited to negative conditions, butalso found in soils enhancing A.thaliana growth. In-depth multivariate analysis highlights that the hypothesis of negative PSF driven solely by pathogens lacks consistency. Instead, we propose a multifactorial explanation for the negative PSF buildup, in which the accumulation of self-DNA weakens the plant's root system, making it more susceptible to pathogens.


Assuntos
Arabidopsis , Microbiota , Retroalimentação , Arabidopsis/genética , Solo/química , Plantas/microbiologia , Microbiologia do Solo , DNA de Plantas
10.
Microb Biotechnol ; 17(2): e14428, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393607

RESUMO

Fermented foods (FFs) are part of the cultural heritage of several populations, and their production dates back 8000 years. Over the last ~150 years, the microbial consortia of many of the most widespread FFs have been characterised, leading in some instances to the standardisation of their production. Nevertheless, limited knowledge exists about the microbial communities of local and traditional FFs and their possible effects on human health. Recent findings suggest they might be a valuable source of novel probiotic strains, enriched in nutrients and highly sustainable for the environment. Despite the increasing number of observational studies and randomised controlled trials, it still remains unclear whether and how regular FF consumption is linked with health outcomes and enrichment of the gut microbiome in health-associated species. This review aims to sum up the knowledge about traditional FFs and their associated microbiomes, outlining the role of fermentation with respect to boosting nutritional profiles and attempting to establish a link between FF consumption and health-beneficial outcomes.


Assuntos
Alimentos Fermentados , Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos , Fermentação
11.
Nat Protoc ; 19(5): 1291-1310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38267717

RESUMO

Deep investigation of the microbiome of food-production and food-processing environments through whole-metagenome sequencing (WMS) can provide detailed information on the taxonomic composition and functional potential of the microbial communities that inhabit them, with huge potential benefits for environmental monitoring programs. However, certain technical challenges jeopardize the application of WMS technologies with this aim, with the most relevant one being the recovery of a sufficient amount of DNA from the frequently low-biomass samples collected from the equipment, tools and surfaces of food-processing plants. Here, we present the first complete workflow, with optimized DNA-purification methodology, to obtain high-quality WMS sequencing results from samples taken from food-production and food-processing environments and reconstruct metagenome assembled genomes (MAGs). The protocol can yield DNA loads >10 ng in >98% of samples and >500 ng in 57.1% of samples and allows the collection of, on average, 12.2 MAGs per sample (with up to 62 MAGs in a single sample) in ~1 week, including both laboratory and computational work. This markedly improves on results previously obtained in studies performing WMS of processing environments and using other protocols not specifically developed to sequence these types of sample, in which <2 MAGs per sample were obtained. The full protocol has been developed and applied in the framework of the European Union project MASTER (Microbiome applications for sustainable food systems through technologies and enterprise) in 114 food-processing facilities from different production sectors.


Assuntos
Microbiota , DNA/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Metagenoma , Metagenômica/métodos , Microbiota/genética , Análise de Sequência de DNA/métodos
12.
Food Res Int ; 175: 113788, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129066

RESUMO

Fresh fish is a highly perishable product and is easily spoiled by microbiological activity and chemical oxidation of lipids. However, microbial spoilage is the main factor linked with the rapid fish sensorial degradation due to the action of specific spoilage organisms (SSOs) that have the ability to dominate over other microorganisms and produce metabolites responsible for off-flavours. We explored the microbial dynamics in fresh anchovies stored in different packaging (air, modified atmosphere, under vacuum) and temperatures (0, 4 and 10 °C) using shotgun metagenomics, highlighting the selection of different microbial species according to the packaging type. Indeed, Pseudoalteromonas nigrifaciens, Psychrobacter cryohalolentis and Ps. immobilis, Pseudomonas deceptionensis and Vibrio splendidus have been identified as the main SSOs in aerobically stored anchovies, while Shewanella baltica, Photobacterium iliopiscarium, Ps. cryohalolentis and Ps. immobilis prevailed in VP and MAP. In addition, we identified the presence of spoilage-associated genes, leading to the potential production of biogenic amines and different off-flavors (H2S, TMA). In particular, the abundance of microbial genes leading to BA biosynthesis increased at higher storage temperature, while those related to H2S and TMA production were enriched in aerobically and VP packed anchovies, suggesting that MAP could be an effective strategy in delaying the production of these compounds. Finally, we provided evidence of the presence of a wide range of antibiotic resistance genes conferring resistance to different classes of antibiotic (ß-lactams, tetracyclines, polymyxins, trimethoprims and phenicols) and highlighted that storage at higher temperature (4 and 10 °C) boosted the abundance of ARG-carrying taxa, especially in aerobically and MAP packed fish.


Assuntos
Embalagem de Alimentos , Microbiota , Animais , Antibacterianos/farmacologia , Microbiologia de Alimentos , Conservação de Alimentos , Genômica , Microbiota/genética
13.
Eur J Nutr ; 63(3): 741-750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151533

RESUMO

PURPOSE: To investigate the relationships between the habitual diet, the protein to fiber ratio (P/F), and the gut microbiome in one Italian and one Dutch cohort of healthy subjects consuming an omnivore diet. METHODS: The Italian cohort included 19 males (M_IT, BMI 25.2 ± 0.72 kg/m2, age 25.4 ± 0.96 years) and 20 females (F_IT, BMI 23.9 ± 0.81 kg/m2, age 23.8 ± 0.54 years); the Dutch cohort included 30 females (F_NL, BMI: 23.9 ± 0.81 kg/m2, age: 23.8 ± 0.54 years). Individual diets were recorded through Food Frequency Questionnaires and analyzed to assess the nutrient composition. Gut microbiome was assessed in fecal samples. RESULTS: M_IT consumed higher levels of proteins than F_NL and F_IT, whereas dietary fiber intake did not differ among groups. Data showed that consumption of plant protein to animal protein (PP/AP) and PP to total proteins ratio can determine a differentiation of F_NL more than the absolute amount of dietary fiber. Conversely, the protein to fiber (P/F) and AP to total proteins better characterized M_IT. M_IT harbored the highest abundance of proteolytic microorganisms and the lowest microbial gene richness. Conversely, F_NL had more fiber-degrading microorganisms like Bacteroides thetaiotaomicron, Bacteroides xylanisolvens, Roseburia sp., Coprococcus eutactus and Parabacteroides along with the highest number of genes encoding carbohydrate-active enzymes and gene richness. It was predicted that by each unit decrease in the P/F a 3% increase in gene richness occurred. CONCLUSION: Study findings suggested that dietary P/F, rather than the absolute amount of dietary fiber, could contribute to the shaping of the microbiome towards a more proteolytic or fiber-degrading gut ecosystem. CLINICALTRIALS: gov Identifier NCT04205045-01-10-2018, retrospectively registered. Dutch Trial Register NTR7531-05-10-2018.


Assuntos
Microbioma Gastrointestinal , Microbiota , Masculino , Feminino , Animais , Humanos , Adulto Jovem , Adulto , Dieta , Carboidratos , Fibras na Dieta/metabolismo , Fezes/química , Proteínas Alimentares , Itália
14.
Front Nutr ; 10: 1236417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908302

RESUMO

Introduction: Microencapsulation of probiotic bacteria is an efficient and innovative new technique aimed at preserving bacterial survival in the hostile conditions of the gastrointestinal tract. However, understanding whether a microcapsule preserves the effectiveness of the bacterium contained within it is of fundamental importance. Methods: Male Wistar rats aged 90 days were fed a control diet or a Western diet for 8 weeks, with rats fed the Western diet divided into three groups: one receiving the diet only (W), the second group receiving the Western diet and free L. reuteri DSM 17938 (WR), and the third group receiving the Western diet and microencapsulated L. reuteri DSM 17938 (WRM). After 8 weeks of treatment, gut microbiota composition was evaluated, together with occludin, one of the tight junction proteins, in the ileum and the colon. Markers of inflammation were also quantified in the portal plasma, ileum, and colon, as well as markers for gut redox homeostasis. Results: The Western diet negatively influenced the intestinal microbiota, with no significant effect caused by supplementation with free and microencapsulated L. reuteri. However, L. reuteri, in both forms, effectively preserved the integrity of the intestinal barrier, thus protecting enterocytes from the development of inflammation and oxidative stress. Conclusion: From these whole data, it emerges that L. reuteri DSM 17938 can be an effective probiotic in preventing the unhealthy consequences of the Western diet, especially in the gut, and that microencapsulation preserves the probiotic effects, thus opening the formulation of new preparations to be able to improve gut function independent of dietary habits.

15.
Front Mol Biosci ; 10: 1266293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900913

RESUMO

Introduction: Food allergy (FA) in children is a major health concern. A better definition of the pathogenesis of the disease could facilitate effective preventive and therapeutic measures. Gut microbiome alterations could modulate the occurrence of FA, although the mechanisms involved in this phenomenon are poorly characterized. Gut bacteria release signaling byproducts from their cell wall, such as lipopolysaccharides (LPSs), which can act locally and systemically, modulating the immune system function. Methods: In the current study gut microbiome-derived LPS isolated from fecal samples of FA and healthy children was chemically characterized providing insights into the carbohydrate and lipid composition as well as into the LPS macromolecular nature. In addition, by means of a chemical/MALDI-TOF MS and MS/MS approach we elucidated the gut microbiome-derived lipid A mass spectral profile directly on fecal samples. Finally, we evaluated the pro-allergic and pro-tolerogenic potential of these fecal LPS and lipid A by harnessing peripheral blood mononuclear cells from healthy donors. Results: By analyzing fecal samples, we have identified different gut microbiome-derived LPS chemical features comparing FA children and healthy controls. We also have provided evidence on a different immunoregulatory action elicited by LPS on peripheral blood mononuclear cells collected from healthy donors suggesting that LPS from healthy individuals could be able to protect against the occurrence of FA, while LPS from children affected by FA could promote the allergic response. Discussion: Altogether these data highlight the relevance of gut microbiome-derived LPSs as potential biomarkers for FA and as a target of intervention to limit the disease burden.

16.
Cell Host Microbe ; 31(11): 1804-1819.e9, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37883976

RESUMO

The Segatella copri (formerly Prevotella copri) complex (ScC) comprises taxa that are key members of the human gut microbiome. It was previously described to contain four distinct phylogenetic clades. Combining targeted isolation with large-scale metagenomic analysis, we defined 13 distinct Segatella copri-related species, expanding the ScC complex beyond four clades. Complete genome reconstruction of thirteen strains from seven species unveiled the presence of genetically diverse large circular extrachromosomal elements. These elements are consistently present in most ScC species, contributing to intra- and inter-species diversities. The nine species-level clades present in humans display striking differences in prevalence and intra-species genetic makeup across human populations. Based on a meta-analysis, we found reproducible associations between members of ScC and the male sex and positive correlations with lower visceral fat and favorable markers of cardiometabolic health. Our work uncovers genomic diversity within ScC, facilitating a better characterization of the human microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Masculino , Microbioma Gastrointestinal/genética , Metagenoma , Filogenia , Prevotella , Feminino
17.
Microbiome ; 11(1): 205, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37705113

RESUMO

BACKGROUND: In the last few years, considerable attention has been focused on the plastic-degrading capability of insects and their gut microbiota in order to develop novel, effective, and green strategies for plastic waste management. Although many analyses based on 16S rRNA gene sequencing are available, an in-depth analysis of the insect gut microbiome to identify genes with plastic-degrading potential is still lacking. RESULTS: In the present work, we aim to fill this gap using Black Soldier Fly (BSF) as insect model. BSF larvae have proven capability to efficiently bioconvert a wide variety of organic wastes but, surprisingly, have never been considered for plastic degradation. BSF larvae were reared on two widely used plastic polymers and shotgun metagenomics was exploited to evaluate if and how plastic-containing diets affect composition and functions of the gut microbial community. The high-definition picture of the BSF gut microbiome gave access for the first time to the genomes of culturable and unculturable microorganisms in the gut of insects reared on plastics and revealed that (i) plastics significantly shaped bacterial composition at species and strain level, and (ii) functions that trigger the degradation of the polymer chains, i.e., DyP-type peroxidases, multicopper oxidases, and alkane monooxygenases, were highly enriched in the metagenomes upon exposure to plastics, consistently with the evidences obtained by scanning electron microscopy and 1H nuclear magnetic resonance analyses on plastics. CONCLUSIONS: In addition to highlighting that the astonishing plasticity of the microbiota composition of BSF larvae is associated with functional shifts in the insect microbiome, the present work sets the stage for exploiting BSF larvae as "bioincubators" to isolate microbial strains and enzymes for the development of innovative plastic biodegradation strategies. However, most importantly, the larvae constitute a source of enzymes to be evolved and valorized by pioneering synthetic biology approaches. Video Abstract.


Assuntos
Dípteros , Microbioma Gastrointestinal , Animais , Larva , Microbioma Gastrointestinal/genética , Plásticos , RNA Ribossômico 16S/genética
18.
Appl Environ Microbiol ; 89(8): e0076523, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37432121

RESUMO

Several microbial taxa have been associated with food processing facilities, and they might resist by attaching on tools and equipment even after sanitation procedures, producing biofilms that adhere to the surfaces and might embed other microorganisms, including spoilers and pathogens. There is increasing evidence that these communities can be transferred to the final product. To explore the microbial contamination routes in a facility producing ice creams, we collected foods and environmental swabs from industrial surfaces of equipment and tools and performed taxonomic and functional analyses of the microbial DNA extracted from the environmental samples. Our results suggest that complex communities dominated by psychrotrophic bacteria (e.g., Pseudomonas and Acinetobacter spp.) inhabit the food processing environment, and we demonstrate that these communities might be transferred from the surfaces to the products. Functional analysis performed on environmental samples highlighted the presence of several genes linked to antimicrobial resistance and adherence on abiotic surfaces; such genes were more abundant on food contact (FC) than on other surfaces. Metagenome-assembled genomes (MAGs) of Pseudomonas stutzeri showed genes linked with biofilm formation and motility, which are surely linked to colonizing capabilities in the processing lines. The study highlights clear potential advantages of applying microbiome mapping in the food industry for source tracking of microbial contamination and for planning appropriate ad hoc sanitization strategies. IMPORTANCE Several microbial species might permanently establish in food processing facilities, thus contributing to food loss. In fact, food contact surfaces might transfer microorganisms to intermediates and products, potentially representing a hazard to human health. In this work, we provide evidence of the existence of complex microbial communities overcoming sanitation in an ice cream-producing facility. These communities harbored several genes that could potentially lead to attachment to surfaces and antimicrobial resistance. Also, prediction of routes of contamination showed that several potential spoilage taxa might end up in the final product. Importantly, in this work, we show that mapping the environmental microbiome is a high-resolution technique that might help food business operators ensure food quality and safety through detection of potentially hazardous microorganisms.


Assuntos
Anti-Infecciosos , Sorvetes , Humanos , Virulência , Bactérias/genética , Manipulação de Alimentos , Biofilmes , Microbiologia de Alimentos
19.
Food Res Int ; 170: 112953, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316045

RESUMO

Many healthy people suffer from milk-related gastrointestinal discomfort (GID) despite not being lactose intolerant; the mechanisms underpinning such condition are unknown. This study aimed to explore milk protein digestion and related physiological responses (primary outcome), gut microbiome and gut permeability in 19 lactose-tolerant healthy nonhabitual milk consumers [NHMCs] reporting GID after consuming cow milk compared to 20 habitual milk consumers [HMCs] without GID. NHMCs and HMCs participated in a milk-load (250 mL) test, underwent blood sample collection at 6 time points over 6 h after milk consumption and collected urine samples and GID self-reports over 24 h. We measured the concentrations of 31 milk-derived bioactive peptides (BAPs), 20 amino acids, 4 hormones, 5 endocannabinoid system mediators, glucose and the dipeptidyl peptidase-IV (DPPIV) activity in blood and indoxyl sulfate in urine samples. Subjects also participated in a gut permeability test and delivered feces sample for gut microbiome analysis. Results showed that, compared to HMCs, milk consumption in NHMCs, along with GID, elicited a slower and lower increase in circulating BAPs, lower responses of ghrelin, insulin, and anandamide, a higher glucose response and serum DPPIV activity. The gut permeability of the two groups was similar, while the habitual diet, which was lower in dairy products and higher in the dietary-fibre-to-protein ratio in NHMCs, possibly shaped the gut microbiome; NHMCs exhibited lower abundance of Bifidobacteria, higher abundance of Prevotella and lower abundance of protease-coding genes, which may have reduced protein digestion, as evidenced by lower urinary excretion of indoxyl sulfate. In conclusion, the findings showed that a less efficient digestion of milk proteins, supported by a lower proteolytic capability of the gut microbiome, may explain GID in healthy people after milk consumption.


Assuntos
Microbioma Gastrointestinal , Leite , Animais , Bovinos , Feminino , Humanos , Proteínas do Leite , Proteólise , Voluntários Saudáveis , Indicã , Lactose
20.
New Microbiol ; 46(2): 196-201, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37247240

RESUMO

The intestinal microbiota plays a fundamental role in physiological homeostasis as well as in pathologic conditions. Hepatitis C virus is the leading cause of chronic liver diseases worldwide. The treatment of this infection has been revolutionized by the availability of direct-acting antiviral agents which guarantee a high rate (about 95%) of viral clearance. Few studies have assessed the change in the gut microbiota of patients treated with direct-acting antiviral agents against HCV, and many aspects still need to be clarified. The aim of the study was to evaluate the effects of antiviral therapy on gut microbiota. We enrolled patients with HCV-related chronic liver disease attending the Infectious Diseases Unit of the A.O.U. Federico II of Naples from January 2017 to March 2018 and treated with DAAs. For each patient, a fecal sample was collected and analyzed for the assessment of microbial diversity before the start of therapy and by SVR12 time. We excluded patients who had received antibiotics in the previous 6 months. Twelve patients were enrolled (6 male, 8 genotype 1 (1 subtype 1a), 4 genotype 2). Fibrosis scores were F0 in 1 patient, F2 in 1 patient, F3 in 4 patients and cirrhosis in the remaining 6 (all in Child-Pugh class A). All were treated with DAAs for 12 weeks (5 with Paritaprevir-Ombitasvir-Ritonavir-Dasabuvir, 3 with Sofosbuvir-Ledipasvir, 1 with Sofosbuvir-Ribavirin, 1 with Sofosbuvir-Daclatasvir, 1 with Sofosbuvir-Velpatasvir) and 100% achieved SVR12. In all patients, we observed a trend in reduction of potentially pathogenic microorganisms (i.e., Enterobacteriaceae). Furthermore, a trend of increase in α-diversity was observed in patients by SVR12 compared to baseline. This trend was markedly more evident in patients without liver cirrhosis than in those with cirrhosis. Our study shows that viral eradication obtained with DAA is associated with a trend in restoring the heterogeneity of α-diversity and in reducing the percentage of potentially pathogenic microbial species, although this benefit is less evident in patients with cirrhosis. Further studies with larger sample size are needed to confirm these data.


Assuntos
Microbioma Gastrointestinal , Hepatite C Crônica , Hepatite C , Compostos Macrocíclicos , Masculino , Humanos , Sofosbuvir , Antivirais/uso terapêutico , Estudos Prospectivos , Hepacivirus/genética , Hepatite C Crônica/complicações , Quimioterapia Combinada , Hepatite C/tratamento farmacológico , Hepatite C/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA