Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artif Organs ; 46(10): 2015-2026, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35642297

RESUMO

BACKGROUND: Cervical transcutaneous spinal cord stimulation (tSCS) is a rehabilitation tool which has been used to promote upper-limb motor recovery after spinal cord injury. Importantly, optimizing sensory fiber activation at specific spinal segments could enable activity-dependent neuromodulation during rehabilitation. METHODS: An anatomically realistic cervical tSCS computational model was used to analyze the activation of α-motor and Aα-sensory fibers at C7 and C8 spinal segments using nine cathode electrode configurations. Specifically, the cathode was simulated at three vertebral level positions: C6, C7, and T1; and in three sizes: 5.0 × 5.0, 3.5 × 3.5, and 2.5 × 2.5 cm2 , while the anode was on the anterior neck. Finite element method was used to estimate the electric potential distribution along α-motor and Aα-sensory fibers, and computational models were applied to simulate the fiber membrane dynamics during tSCS. The minimum stimulation intensity necessary to activate the fibers (activation threshold) was estimated and compared across cathode configurations in an effort to optimize sensory fiber activation. RESULTS: Our results showed that nerve fibers at both C7 and C8 spinal segments were recruited at lower stimulation intensities when the cathode was positioned over the C7 or T1 vertebra compared with the C6 position. Sensory fibers were activated at lower stimulation intensities using smaller electrodes, which could also affect the degree of nerve fiber activation across different positions. Importantly, Aα-sensory fibers were consistently recruited before α-motor fibers. CONCLUSIONS: These results imply that cathode positioning could help optimize preferential activation of hand muscles during cervical tSCS.


Assuntos
Estimulação da Medula Espinal , Estimulação Elétrica , Eletrodos , Músculo Esquelético/fisiologia , Medula Espinal/fisiologia , Estimulação da Medula Espinal/métodos , Coluna Vertebral
2.
J Neural Eng ; 19(3)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35472720

RESUMO

Objective. Cervical transcutaneous spinal cord stimulation (tSCS) is a promising technology that can support motor function recovery of upper-limbs after spinal cord injury. Its efficacy may depend on the ability to recruit sensory afferents, conveying excitatory inputs onto motoneurons. Therefore, understanding its physiological mechanisms is critical to accelerate its development towards clinical applications. In this study, we used an anatomically realistic cervical tSCS computational model to compare α-motor, Aα-sensory, and Aß-sensory fiber activation thresholds and activation sites.Approach. We developed a 3D geometry of the cervical body and tSCS electrodes with a cathode centred at the C7 spinous process and an anode placed over the anterior neck. The geometrical model was used to estimate the electric potential distributions along motor and sensory fiber trajectories at the C7 spinal level using a finite element method. We implemented dedicated motor and sensory fiber models to simulate the α-motor and Aα-sensory fibers using 12, 16, and 20 µm diameter fibers, and Aß-sensory fibers using 6, 9, and 12 µm diameter fibers. We estimated nerve fiber activation thresholds and sites for a 2 ms monophasic stimulating pulse and compared them across the fiber groups.Main results. Our results showed lower activation thresholds of Aα- and Aß-sensory fibers compared with α-motor fibers, suggesting preferential sensory fiber activation. We also found no differences between activation thresholds of Aα-sensory and large Aß-sensory fibers, implying their co-activation. The activation sites were located at the dorsal and ventral root levels.Significance. Using a realistic computational model, we demonstrated preferential activation of dorsal root Aα- and Aß-sensory fibers compared with ventral root α-motor fibers during cervical tSCS. These findings suggest high proprioceptive and cutaneous contributions to neural activations during cervical tSCS, which inform the underlying mechanisms of upper-limb functional motor recovery.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Estimulação Elétrica/métodos , Humanos , Neurônios Motores , Medula Espinal/fisiologia
3.
J Clin Med ; 10(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34441927

RESUMO

Cervical transcutaneous spinal cord stimulation (tSCS) has been utilized in applications for improving upper-limb sensory and motor function in patients with spinal cord injury. Although therapeutic effects of continuous cervical tSCS interventions have been reported, neurophysiological mechanisms remain largely unexplored. Specifically, it is not clear whether sub-threshold intensity and 10-min duration continuous cervical tSCS intervention can affect the central nervous system excitability. Therefore, the purpose of this study was to investigate effects of sub-motor-threshold 10-min continuous cervical tSCS applied at rest on the corticospinal and spinal reflex circuit in ten able-bodied individuals. Neurophysiological assessments were conducted to investigate (1) corticospinal excitability via transcranial magnetic stimulation applied on the primary motor cortex to evoke motor-evoked potentials (MEPs) and (2) spinal reflex excitability via single-pulse tSCS applied at the cervical level to evoke posterior root muscle (PRM) reflexes. Measurements were recorded from multiple upper-limb muscles before, during, and after the intervention. Our results showed that low-intensity and short-duration continuous cervical tSCS intervention applied at rest did not significantly affect corticospinal and spinal reflex excitability. The stimulation duration and/or intensity, as well as other stimulating parameters selection, may therefore be critical for inducing neuromodulatory effects during cervical tSCS.

4.
J Appl Physiol (1985) ; 131(2): 746-759, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34138648

RESUMO

Cervical transcutaneous spinal cord stimulation (tSCS) efficacy for rehabilitation of upper-limb motor function was suggested to depend on recruitment of Ia afferents. However, selectivity and excitability of motor activation with different electrode configurations remain unclear. In this study, activation of upper-limb motor pools was examined with different cathode and anode configurations during cervical tSCS in 10 able-bodied individuals. Muscle responses were measured from six upper-limb muscles simultaneously. First, postactivation depression was confirmed with tSCS paired pulses (50-ms interval) for each cathode configuration (C6, C7, and T1 vertebral levels), with anode on the anterior neck. Selectivity and excitability of activation of the upper-limb motor pools were examined by comparing the recruitment curves (10-100 mA) of first evoked responses across muscles and cathode configurations. Our results showed that hand muscles were preferentially activated when the cathode was placed over T1 compared with the other vertebral levels, whereas there was no selectivity for proximal arm muscles. Furthermore, higher stimulation intensities were required to activate distal hand muscles than proximal arm muscles, suggesting different excitability thresholds between muscles. In a separate protocol, responses were compared between anode configurations (anterior neck, shoulders, iliac crests, and back), with one selected cathode configuration. The level of discomfort was also assessed. Largest muscle responses were elicited with the anode configuration over the anterior neck, whereas there were no differences in the discomfort. Our results therefore inform methodological considerations for electrode configuration to help optimize recruitment of Ia afferents during cervical tSCS.NEW & NOTEWORTHY We examined selectivity and excitability of motor activation in multiple upper-limb muscles during cervical transcutaneous spinal cord stimulation with different cathode and anode configurations. Hand muscles were more activated when the cathode was configured over the T1 vertebra compared with C6 and C7 locations. Higher stimulation intensities were required to activate distal hand muscles than proximal arm muscles. Finally, configuration of anode over anterior neck elicited larger responses compared with other configurations.


Assuntos
Estimulação da Medula Espinal , Estimulação Elétrica , Eletromiografia , Mãos , Humanos , Músculo Esquelético , Medula Espinal , Extremidade Superior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA