RESUMO
Optically stimulated luminescence (OSL) film dosimeters, based on BaFBr:Eu2+phosphor material, have major dosimetric advantages such as dose linearity, high spatial resolution, film re-usability, and immediate film readout. However, they exhibit an energy-dependent over-response at low photon energies because they are not made of tissue-equivalent materials. In this work, the OSL energy-dependent response was optimized by lowering the phosphor grain size and seeking an optimal choice of phosphor concentration and film thickness to achieve sufficient signal sensitivity. This optimization process combines measurement-based assessments of energy response in narrow x-ray beams with various energy response calculation methods applied to different film metrics. Theoretical approaches and MC dose simulations were used for homogeneous phosphor distributions and for isolated phosphor grains of different dimensions, where the dose in the phosphor grain was calculated. In total 8 OSL films were manufactured with different BaFBr:Eu2+median particle diameters (D50): 3.2µm, 1.5µm and 230 nm and different phosphor concentrations (1.6%, 5.3% and 21.3 %) and thicknesses (from 5.2 to 49µm). Films were irradiated in narrow x-ray spectra (N60, N80, N-150 and N-300) and the signal intensity relative to the nominal dose-to-water value was normalized to Co-60. Finally, we experimentally tested the response of several films in Varian 6MV TrueBeam STx linear accelerator using the following settings: 10 × 10 cm2field, 0deggantry angle, 90 cm SSD, 10 cm depth. The x-ray irradiation experiment reported a reduced energy response for the smallest grain size with an inverse correlation between response and grain size. The N-60 irradiation showed a 43% reduction in the energy over-response when going from 3µm to 230 nm grain size for the 5% phosphor concentration. Energy response calculation using a homogeneous dispersion of the phosphor underestimated the experimental response and was not able to obtain the experimental correlation between grain size and energy response. Isolated grain size modeling combined with MC dose simulations allowed to establish a good agreement with experimental data, and enabled steering the production of optimized OSL-films. The clinical 6 MV beam test confirmed a reduction in energy dependence, which is visible in small-grain films where a decrease in out-of-field over-response was observed.
Assuntos
Dosimetria por Luminescência Estimulada Opticamente , Método de Monte Carlo , Radiometria , Luminescência , Raios X , Dosimetria Fotográfica/métodosRESUMO
Radiotherapy is part of the treatment of over 50% of cancer patients. Its efficacy is limited by the radiotoxicity to the healthy tissue. FLASH-RT is based on the biological effect that ultra-high dose rates (UHDR) and very short treatment times strongly reduce normal tissue toxicity, while preserving the anti-tumoral effect. Despite many positive preclinical results, the translation of FLASH-RT to the clinic is hampered by the lack of accurate dosimetry for UHDR beams. To date radiochromic film is commonly used for dose assessment but has the drawback of lengthy and cumbersome read out procedures. In this work, we investigate the equivalence of a 2D OSL system to radiochromic film dosimetry in terms of dose rate independency. The comparison of both systems was done using the ElectronFlash linac. We investigated the dose rate dependence by variation of the (1) modality, (2) pulse repetition frequency, (3) pulse length and (4) source to surface distance. Additionally, we compared the 2D characteristics by field size measurements. The OSL calibration showed transferable between conventional and UHDR modality. Both systems are equally independent of average dose rate, pulse length and instantaneous dose rate. The OSL system showed equivalent in field size determination within 3 sigma. We show the promising nature of the 2D OSL system to serve as alternative for radiochromic film in UHDR electron beams. However, more in depth characterization is needed to assess its full potential.
Assuntos
Elétrons , Dosimetria por Luminescência Estimulada Opticamente , Humanos , Imagens de Fantasmas , Radiometria , Planejamento da Radioterapia Assistida por Computador/métodos , Dosimetria Fotográfica/métodosRESUMO
BACKGROUND: Optically stimulated luminescence (OSL) dosimeters produce a signal linear to the dose, which fades with time due to the spontaneous recombination of energetically unstable electron/hole traps. When used for radiotherapy (RT) applications, fading affects the signal-to-dose conversion and causes an error in the final dose measurement. Moreover, the signal fading depends to some extent on treatment-specific irradiation conditions such as irradiation times. PURPOSE: In this work, a dose calibration function for a novel OSL film dosimeter was derived accounting for signal fading. The proposed calibration allows to perform dosimetry evaluation for different RT treatment regimes. METHODS: A novel BaFBr:Eu2+ -based OSL film (Zeff , 6 MV = 4.7) was irradiated on a TrueBeam STx using a 6 MV beam with setup: 0° gantry angle, 90 cm SSD, 10 cm depth, 10 × 10 cm2 field. A total of 86 measurements were acquired for dose-rates ( D Ì $\dot{D}$ ) of 600, 300, and 200 MU/min for irradiation times (tir ) of 0.2, 1, 2, 4.5, 12, and 23 min and various readout times (tscan ) between 4 and 1440 min from the start of the exposure (beam-on time). The OSL signal, S ( D Ì , t i r , t s c a n ) $S(\dot{D},{t}_{ir},{t}_{scan})$ , was modeled via robust nonlinear regression, and two different power-law fading models were tested, respectively, independent (linear model) and dependent on the specific t i r ${t}_{ir}$ (delivery-dependent model). RESULTS: After 1 day from the exposure, the error on the dose measurement can be as high as 48% if a fading correction is not considered. The fading contribution was characterized by two accurate models with adjusted-R2 of 0.99. The difference between the two models is <4.75% for all t i r ${t}_{ir}$ and t s c a n ${t}_{scan}$ . For different beam-on times, 3, 10.5, and 20 min, the optimum t s c a n ${t}_{scan}$ was calculated in order to achieve a signal-to-dose conversion with a model-related error <1%. In the case of a 3 min irradiation, this condition is already met when the OSL-film is scanned immediately after the end of the irradiation. For an irradiation of 10.5 and 20 min, the minimum scanning time to achieve this model-related error increases, respectively, to 30 and 90 min. Under these conditions, the linear model can be used for the signal-to-dose conversion as an approximation of the delivery-dependent model. The signal-to-dose function, D(Mi , j , t s c a n $\ {t}_{scan}$ ), has a residual mean error of 0.016, which gives a residual dose uncertainty of 0.5 mGy in the region of steep signal fading (i.e., t s c a n ${t}_{scan}\ $ = 4 min). The function of two variables is representable as a dose surface depending on the signal (Mi , j ) measured for each i,j-pixel and the time of scan ( t s c a n ${t}_{scan}$ ). CONCLUSIONS: The calibration of a novel OSL-film usable for dosimetry in different RT treatments was corrected for its signal fading with two different models. A linear calibration model independent from the treatment-specific irradiation condition results in a model-related error <1% if a proper scanning time is used for each irradiation length. This model is more practical than the delivery-dependent model because it does not need a pixel-to-pixel fading correction for different t i r ${t}_{ir}$ .
Assuntos
Dosimetria por Luminescência Estimulada Opticamente , Dosímetros de Radiação , Calibragem , Dosimetria por Luminescência Estimulada Opticamente/métodos , Radiometria , Modelos Lineares , LuminescênciaRESUMO
Real time radioluminescence fibre-based detectors were investigated for application in proton, helium, and carbon therapy dosimetry. The Al2O3:C probes are made of one single crystal (1 mm) and two droplets of micro powder in two sizes (38 µm and 4 µm) mixed with a water-equivalent binder. The fibres were irradiated behind different thicknesses of solid slabs, and the Bragg curves presented a quenching effect attributed to the nonlinear response of the radioluminescence (RL) signal as a function of linear energy transfer (LET). Experimental data and Monte Carlo simulations were utilised to acquire a quenching correction method, adapted from Birks' formulation, to restore the linear dose-response for particle therapy beams. The method for quenching correction was applied and yielded the best results for the '4 µm' optical fibre probe, with an agreement at the Bragg peak of 1.4% (160 MeV), and 1.5% (230 MeV) for proton-charged particles; 2.4% (150 MeV/u) for helium-charged particles and of 4.8% (290 MeV/u) and 2.9% (400 MeV/u) for the carbon-charged particles. The most substantial deviations for the '4 µm' optical fibre probe were found at the falloff regions, with ~3% (protons), ~5% (helium) and 6% (carbon).
Assuntos
Hélio , Prótons , Carbono , Fibras Ópticas , Sistemas ComputacionaisRESUMO
FLASH radiation therapy is a novel technique combining ultra-high dose rates (UHDR) with very short treatment times to strongly decrease normal tissue toxicity while preserving the anti-tumoral effect. However, the radiobiological mechanisms and exact conditions for obtaining the FLASH-effect are still under investigation. There are strong indications that parameters defining the beam structure, such as dose per pulse, instantaneous dose rate and pulse repetition frequency (PRF) are of importance. UHDR irradiations therefore come with dosimetric challenges, including both dose assessment and temporal ones. In this work, a first characterization of 6 real-time point scintillating dosimeters with 5 phosphors (Al2O3:C,Mg; Y2O3:Eu; Al2O3:C; (C38H34P2)MnBr4 and (C38H34P2)MnCl4, was performed in an UHDR pulsed electron beam. The dose rate independence of the calibration was tested by calibrating the detector at conventional and UHDR. Dose rate dependence was observed, however, further investigation, including intermediate dose rates, is needed. Linearity of the response with dose was tested by varying the number of pulses and a linearity with R2> 0.9989 was observed up to at least 200 Gy. Dose per pulse linearity was investigated by variation of the pulse length and SSD. All point scintillators showed saturation effects up to some extent and the instantaneous dose rate dependence was confirmed. A PRF dependence was observed for the Al2O3:C,Mg and Al2O3:C- based point scintillators. This was expected as the luminescence decay time of these materials exceeds the inter-pulse time.
Assuntos
Elétrons , Radiometria , Dosímetros de Radiação , Calibragem , LuminescênciaRESUMO
Proton radiography imaging was proposed as a promising technique to evaluate internal anatomical changes, to enable pre-treatment patient alignment, and most importantly, to optimize the patient specific CT number to stopping-power ratio conversion. The clinical implementation rate of proton radiography systems is still limited due to their complex bulky design, together with the persistent problem of (in)elastic nuclear interactions and multiple Coulomb scattering (i.e. range mixing). In this work, a compact multi-energy proton radiography system was proposed in combination with an artificial intelligence network architecture (ProtonDSE) to remove the persistent problem of proton scatter in proton radiography. A realistic Monte Carlo model of the Proteus®One accelerator was built at 200 and 220 MeV to isolate the scattered proton signal in 236 proton radiographies of 80 digital anthropomorphic phantoms. ProtonDSE was trained to predict the proton scatter distribution at two beam energies in a 60%/25%/15% scheme for training, testing, and validation. A calibration procedure was proposed to derive the water equivalent thickness image based on the detector dose response relationship at both beam energies. ProtonDSE network performance was evaluated with quantitative metrics that showed an overall mean absolute percentage error below 1.4% ± 0.4% in our test dataset. For one example patient, detector dose to WET conversions were performed based on the total dose (ITotal), the primary proton dose (IPrimary), and the ProtonDSE corrected detector dose (ICorrected). The determined WET accuracy was compared with respect to the reference WET by idealistic raytracing in a manually delineated region-of-interest inside the brain. The error was determined 4.3% ± 4.1% forWET(ITotal),2.2% ± 1.4% forWET(IPrimary),and 2.5% ± 2.0% forWET(ICorrected).
Assuntos
Terapia com Prótons , Prótons , Inteligência Artificial , Humanos , Método de Monte Carlo , Imagens de Fantasmas , RadiografiaRESUMO
Passive detectors, as albedo or track-etch, still dominate the field of neutron personal dosimetry, mainly due to their low-cost, high-reliability and elevated throughput. However, the recent appearance in the market of electronic personal dosemeters for neutrons presents a new option for personal dosimetry. In addition to passive detectors, electronic personal dosemeters necessitate correction factors, concerning their energy and angular response dependencies. This paper reports on the results of a method to evaluate personal dosemeters for workplace where neutrons are present. The approach here uses few instruments and does not necessitate a large mathematical workload. Qualitative information on the neutron energy spectrum is acquired using a simple spectrometer (Nprobe), reference values for H*(10) are derived from measurements with ambient detectors (Studsvik, Berthold and Harwell) and angular information is measured using personal dosemeters (electronic and bubbles dosemeters) disposed in different orientations on a slab phantom.