Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS ES T Water ; 3(12): 3884-3892, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38094919

RESUMO

Source-separated gray water reclamation using nanofiltration as an advanced post-treatment option has received substantial interest in meeting the growing water demand. During reclamation, membrane integrity is crucial to ensure the water's safety. This study evaluated several chemical and novel microbial indicators as indirect membrane integrity-monitoring methods for hollow fiber nanofiltration membranes in reclamation schemes. Under normal conditions, high retention of divalent ions and organic matter and near-complete removal of Escherichia coli (E. coli) were observed. Limited removal of the antibiotic gene (ARG) tetO was observed due to low feed concentrations and a higher detection limit (LOD). While 16S rRNA and ARG sul1 were not limited by their LODs, lower removals were observed, most likely due to free-floating DNA passing through the membranes. A broken fiber in a pilot-scale module reduced organic matter and microorganism removal substantially, while flux and ion rejection remained similar. Predictions made using the observed results and a previously proposed model allowed for the evaluation of the selected methods in upscaled reclamation systems. Based on these results, it was concluded that microorganisms could be employed as indicators in indirect membrane integrity-monitoring methods in large-scale reclamation schemes, while UV254nm absorbance (used in organic matter determination) could be a viable solution in pilot-scale systems.

2.
Membranes (Basel) ; 13(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37623802

RESUMO

In a single-step spinning process, we create a thin-walled, robust hollow fiber support made of Torlon® polyamide-imide featuring an intermediate polyethyleneimine (PEI) lumen layer to facilitate the integration and covalent attachment of a dense selective layer. Subsequently, interfacial polymerization of m-phenylenediamine and trimesoyl chloride forms a dense selective polyamide (PA) layer on the inside of the hollow fiber. The resulting thin-film composite hollow fiber membranes show high NaCl rejections of around 96% with a pure water permeability of 1.2 LMH/bar. The high success rate of fabricating the thin-film composite hollow fiber membrane proves our hypothesis of a supporting effect of the intermediate PEI layer on separation layer formation. This work marks a step towards the development of a robust method for the large-scale manufacturing of thin-film composite hollow fiber membranes for reverse osmosis and nanofiltration.

3.
Membranes (Basel) ; 13(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37103815

RESUMO

The in situ synthesis of Fe0 particles using poly-(acrylic acid) (PAA) is an effective tool for fabricating catalytic membranes relevant to advanced oxidation processes (AOPs). Through their synthesis in polyelectrolyte multilayer-based nanofiltration membranes, it becomes possible to reject and degrade organic micropollutants simultaneously. In this work, we compare two approaches, where Fe0 nanoparticles are synthesized in or on symmetric multilayers and asymmetric multilayers. For the membrane with symmetric multilayers (4.0 bilayers of poly (diallyldimethylammonium chloride) (PDADMAC)/PAA), the in situ synthesized Fe0 increased its permeability from 1.77 L/m2/h/bar to 17.67 L/m2/h/bar when three Fe2+ binding/reducing cycles were conducted. Likely, the low chemical stability of this polyelectrolyte multilayer allows it to become damaged through the relatively harsh synthesis. However, when the in situ synthesis of Fe0 was performed on top of asymmetric multilayers, which consist of 7.0 bilayers of the very chemically stable combination of PDADMAC and poly(styrene sulfonate) (PSS), coated with PDADMAC/PAA multilayers, the negative effect of the Fe0 in situ synthesized can be mitigated, and the permeability only increased from 1.96 L/m2/h/bar to 2.38 L/m2/h/bar with three Fe2+ binding/reducing cycles. The obtained membranes with asymmetric polyelectrolyte multilayers exhibited an excellent naproxen treatment efficiency, with over 80% naproxen rejection on the permeate side and 25% naproxen removal on the feed solution side after 1 h. This work demonstrates the potential of especially asymmetric polyelectrolyte multilayers to be effectively combined with AOPs for the treatment of micropollutants (MPs).

4.
Membranes (Basel) ; 11(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832119

RESUMO

Hollow fiber nanofiltration (NF) membranes have gained increased attention in recent years, partly driven by the availability of alternatives to polyamide-based dense separation layers. Moreover, the global market for NF has been growing steadily in recent years and is expected to grow even faster. Compared to the traditional spiral-wound configuration, the hollow fiber geometry provides advantages such as low fouling tendencies and effective hydraulic cleaning possibilities. The alternatives to polyamide layers are typically chemically more stable and thus allow operation and cleaning at more extreme conditions. Therefore, these new NF membranes are of interest for use in a variety of applications. In this review, we provide an overview of the applications and emerging opportunities for these membranes. Next to municipal wastewater and drinking water processes, we have put special focus on industrial applications where hollow fiber NF membranes are employed under more strenuous conditions or used to recover specific resources or solutes.

5.
Biotechnol Bioeng ; 117(10): 3040-3052, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32568408

RESUMO

The use of bioreactors coupled to membrane-based perfusion systems enables very high cell and product concentrations in vaccine and viral vector manufacturing. Many virus particles, however, are not stable and either lose their infectivity or physically degrade resulting in significant product losses if not harvested continuously. Even hollow fiber membranes with a nominal pore size of 0.2 µm can retain much smaller virions within a bioreactor. Here, we report on a systematic study to characterize structural and physicochemical membrane properties with respect to filter fouling and harvesting of yellow fever virus (YFV; ~50 nm). In tangential flow filtration perfusion experiments, we observed that YFV retention was only marginally determined by nominal but by effective pore sizes depending on filter fouling. Evaluation of scanning electron microscope images indicated that filter fouling can be reduced significantly by choosing membranes with (i) a flat inner surface (low boundary layer thickness), (ii) a smooth material structure (reduced deposition), (iii) a high porosity (high transmembrane flux), (iv) a distinct pore size distribution (well-defined pore selectivity), and (v) an increased fiber wall thickness (larger effective surface area). Lowest filter fouling was observed with polysulfone (PS) membranes. While the use of a small-pore PS membrane (0.08 µm) allowed to fully retain YFV within the bioreactor, continuous product harvesting was achieved with the large-pore PS membrane (0.34 µm). Due to the low protein rejection of the latter, this membrane type could also be of interest for other applications, that is, recombinant protein production in perfusion cultures.


Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos/virologia , Filtração/instrumentação , Tamanho da Partícula , Perfusão/métodos , Vírus/crescimento & desenvolvimento , Linhagem Celular , Membranas Artificiais , Vírus/isolamento & purificação
6.
J Colloid Interface Sci ; 446: 386-93, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25554085

RESUMO

This manuscript investigates the modification of an ultra-filtration (UF) membrane support with polyelectrolyte multilayers (PEMs) consisting of the weak polyelectrolytes poly(allyl amine) hydrochloride (PAH) and poly(acrylic acid) (PAA). These prepared polyelectrolyte multilayer membranes have a dual function: They act as nanofiltration (NF) membranes and as sacrificial layers to allow easy cleaning of the membranes. In order to optimize the conditions for PEM coating and removal, adsorption and desorption of these layers on a model surface (silica) was first studied via optical reflectometry. Subsequently, a charged UF membrane support was coated with a PEM and after each deposited layer, a clear increase in membrane resistance against pure water permeation and a switch of the zeta potential were observed. Moreover these polyelectrolyte multilayer membranes, exhibited rejection of solutes in a range typical for NF membranes. Monovalent ions (NaCl) were hardly rejected (<24%), while rejections of >60% were observed for a neutral organic molecule sulfamethoxazole (SMX) and for the divalent ion SO3(2-). The rejection mechanism of these membranes seems to be dominated by size-exclusion. To investigate the role of these PEMs as sacrificial layers for the cleaning of fouled membranes, the prepared polyelectrolyte multilayers were fouled with silica nano particles. Subsequent removal of the coating using a rinse and a low pressure backwash with pH 3, 3M NaNO3 allowed for a drop in membrane resistance from 1.7⋅10(14)m(-1) (fouled membrane) to 9.9⋅10(12)m(-1) (clean membrane), which is nearly equal to that of the pristine membrane (9.7⋅10(12)m(-1)). Recoating of the support membrane with the same PEMs resulted in a resistance equal to the resistance of the original polyelectrolyte multilayer membrane. Interestingly, less layers were needed to obtain complete foulant removal from the membrane surface, than was the case for the model surface. The possibility for backwashing allows for an even more successful use of the sacrificial layer approach in membrane technology than on model surfaces. Moreover, these PEMs can be used to provide a dual function, as NF membranes and as a Sacrificial coating to allow easy membrane cleaning.

7.
ACS Appl Mater Interfaces ; 6(19): 17009-17, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25203928

RESUMO

Hollow fiber nanofiltration membranes can withstand much higher foulant concentrations than their spiral wound counterparts and can be used in water purification without pretreatment. Still, the preparation of hollow fiber nanofiltration membranes is much less established. In this work, we demonstrate the design of a hollow fiber nanofiltration membrane with excellent rejection properties by alternatively coating a porous ultrafiltration membrane with a polycation, a polyzwitterion, and a polyanion. On model surfaces, we show, for the first time, that the polyzwitterion poly N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (PSBMA) can be incorporated into traditional polyelectrolyte multilayers based on poly(styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC). Furthermore, work on model surfaces allows a good characterization of, and insight into, the layer build-up and helps to establish the optimal membrane coating conditions. Membranes coated with these multilayers have high salt rejection of up to 42% NaCl, 72% CaCl2, and 98% Na2SO4 with permeabilities of 3.7-4.5 l·m(-2)·h(-1)·bar(-1). In addition to the salt rejections, the rejection of six distinctively different micropollutants, with molecular weights between 215 and 362 g·mol(-1), was investigated. Depending on the terminating layer, the incorporation of the polyzwitterion in the multilayer results in nanofiltration membranes that show excellent retentions for both positively and negatively charged micropollutants, a behavior that is attributed to dielectric exclusion of the solutes. Our approach of combining model surfaces with membrane performance measurements provides unique insights into the properties of polyzwitterion-containing multilayers and their applications.

8.
Langmuir ; 30(18): 5152-61, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24749944

RESUMO

We systematically investigate the assembly of multilayers based on a polyzwitterion (PSBMA) and a polycation (PDADMAC) for the development of ionic strength responsive membranes. Although the polyzwitterion is essentially charge neutral, we show that specific electrostatic interactions with the PDADMAC allow for the formation of stable multilayers. The growth of this LbL system is monitored on model surfaces (silica) via optical reflectometry for different pH values and ionic strengths. While no effect of pH on the layer growth is observed, we did observe a strong dependence on the ionic strength. Upon increasing the ionic strength during deposition from 0.005 to 0.5 M NaCl, the adsorbed amount is significantly decreased, a behavior that is opposite to classical LbL systems. Similar results to those obtained on silica are also observed on top of classical LbL systems and on polymeric membranes. This demonstrates that the growth of the polyzwitterion multilayers is independent of the substrate. Coating these polyzwitterion multilayers on hollow fiber membranes via dip-coating yields membranes that are stimuli responsive toward the ionic strength of the filtration solution, with an increase in permeability of up to 108% from 0 to 1.5 M NaCl. We show that the fabrication of the polyzwitterion multilayers is an easy and controlled way to provide surfaces, such as membranes, with the specific functionalities of polyzwitterions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA