Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 395: 133638, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35816985

RESUMO

Hard to cook phenomenon results from inadequate post-harvest storage of the bean associated with the microstructure and changes in seed color and texture. The aim of this study was to evaluate the physical and chemical properties, identify the phenolic compounds and their relationship with the black bean seed coat microstructure during 270 days at 30 °C and 70% r. h. The water absorption capacity decrease to 12.19% that induced changes in seed texture observed by increasing the hardness from 5.42 to 19.96 N. A total of 37 compounds were identified by UPLC-ESI-MS and the changes in phenolic profile during storage period contribute to the seed coat color saturation. The identification of flavonoids, hydroxybenzoic and hydroxycinnamic acids, as well as distribution of condensed tannins in the seed coat, the changes in physical properties evidenced by seed darkening and hardening contribute to the seed coat impermeability.


Assuntos
Fabaceae , Phaseolus , Proantocianidinas , Flavonoides/análise , Phaseolus/química , Fenóis/análise , Proantocianidinas/análise , Sementes/química
2.
Sci Total Environ ; 828: 154434, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278555

RESUMO

The present study establishes a new procedure to characterize micro(nano)plastics (MNPs) and identify contaminants adhered to the plastic particles in aquatic environments by applying ultra-high resolution microscopy and spectroscopy techniques. Naturally fragmented microplastics (MPs) were collected from Manzanillo and Santiago Bays, Mexico and analyzed using: Confocal Laser Scanning Microscopy (CLSM), Fourier-Transform Infrared Spectroscopy (FTIR), µ-RAMAN, Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and Environmental Electron Scanning Microscopy (ESEM). The information obtained from each of these techniques was integrated to produce a comprehensive profile of each particle. Sample preparation was tested by applying three different rinses (unrinsed, distilled water and alcohol) to untreated MPs collected from Manzanillo Bay, finding that when large impurities are present an alcohol rinse makes it easier to examine the associated contaminants. Based on this emerging methodology, polyethylene and polypropylene MPs were identified with associated contaminants such as arsenic, cadmium, aluminum, and benzene. This study demonstrates the presence of pollutants that may be linked to MNPs in aquatic ecosystems and proposes an accurate relatively fast procedure for their analysis that does not require chemical extraction.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental/métodos , Plásticos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
3.
J Food Sci ; 79(8): M1545-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25039289

RESUMO

The microbiota associated with spontaneous fermentation of vegetables in a saline substrate may represent an important group of bacteria in the food industry. In this work, the lactic acid bacteria (LAB) Weissella cibaria, Lactobacillus plantarum, Lactobacillus paraplantarum, and Leuconostoc citreum were identified by partial 16S rRNA gene sequence analysis. In addition, entophytic bacteria such as Pantoea eucalypti, Pantoea anthophila, Enterobacter cowanii, and Enterobacter asburiae were detected, but they were irrelevant for the fermentation process and were inhibited after 12 h of fermentation when the pH decreased from 6.5 to 4.9. Moreover, 2 species of yeast were isolated and identified as Hanseniaspora pseudoguilliermondii and Kodamaea ohmeri by their partial 26S rRNA gene sequence. The growth of LAB was evaluated at different sodium chloride contents. L. citreum was the most halotolerant species followed by L. plantarum and W. cibaria with a concentration index to obtain a 50% population reduction (IC(50)) of 7.2%, 6.6%, and 5.2%, respectively. Furthermore, the growth of LAB and Escherichia coli O157:H7 was evaluated in the presence of the main phenylpropanoids from chilli peppers such as p-coumaric and ferulic acid. It was determined that LAB can grow in both acids at 4 mM, unlike E. coli O157:H7, whose growth is inhibited in the presence of these acids.


Assuntos
Capsicum/microbiologia , Fermentação , Lactobacillaceae/isolamento & purificação , Leuconostoc/isolamento & purificação , DNA Bacteriano/genética , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/isolamento & purificação , Microbiologia de Alimentos , Lactobacillaceae/classificação , Lactobacillaceae/crescimento & desenvolvimento , Leuconostoc/crescimento & desenvolvimento , Fenótipo , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Verduras/microbiologia , Leveduras/crescimento & desenvolvimento , Leveduras/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA