Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; : e2350685, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890809

RESUMO

Unsaturated fatty acids (UFA) are crucial for T-cell effector functions, as they can affect the growth, differentiation, survival, and function of T cells. Nonetheless, the mechanisms by which UFA affects T-cell behavior are ill-defined. Therefore, we analyzed the processing of oleic acid, a prominent UFA abundantly present in blood, adipocytes, and the fat pads surrounding lymph nodes, in CD4+ T cells. We found that exogenous oleic acid increases proliferation and enhances the calcium flux response upon CD3/CD28 activation. By using a variety of techniques, we found that the incorporation of oleic acid into membrane lipids, rather than regulation of cellular metabolism or TCR expression, is essential for its effects on CD4+ T cells. These results provide novel insights into the mechanism through which exogenous oleic acid enhances CD4+ T-cell function.

2.
Open Biol ; 11(3): 210030, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33715389

RESUMO

Nucleic acid sensing through pattern recognition receptors is critical for immune recognition of microbial infections. Microbial DNA is frequently methylated at the N6 position of adenines (m6A), a modification that is rare in mammalian host DNA. We show here how that m6A methylation of 5'-GATC-3' motifs augments the immunogenicity of synthetic double-stranded (ds)DNA in murine macrophages and dendritic cells. Transfection with m6A-methylated DNA increased the expression of the activation markers CD69 and CD86, and of Ifnß, iNos and Cxcl10 mRNA. Similar to unmethylated cytosolic dsDNA, recognition of m6A DNA occurs independently of TLR and RIG-I signalling, but requires the two key mediators of cytosolic DNA sensing, STING and cGAS. Intriguingly, the response to m6A DNA is sequence-specific. m6A is immunostimulatory in some motifs, but immunosuppressive in others, a feature that is conserved between mouse and human macrophages. In conclusion, epigenetic alterations of DNA depend on the context of the sequence and are differentially perceived by innate cells, a feature that could potentially be used for the design of immune-modulating therapeutics.


Assuntos
Adenina/análogos & derivados , Metilação de DNA , Imunidade Inata , Oligodesoxirribonucleotídeos/imunologia , Adenina/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígeno B7-2/metabolismo , Células Cultivadas , Quimiocina CXCL10/metabolismo , Citoplasma/metabolismo , Células Dendríticas/imunologia , Humanos , Interferon beta/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Oligodesoxirribonucleotídeos/química , Receptores Toll-Like/metabolismo
3.
Eur J Immunol ; 48(3): 471-481, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29283192

RESUMO

Emerging evidence indicates that a dynamic interplay between the immune system and adipocytes contributes to the disturbed homeostasis in adipose tissue of obese subjects. Recently, we observed IL-6-secretion by CD4+ T cells from the stromal vascular fraction (SVF) of the infrapatellar fat pad (IFP) of knee osteoarthritis patients directly ex vivo. Here we show that human IL-6+ CD4+ T cells from SVF display a more activated phenotype than the IL-6- T cells, as evidenced by the expression of the activation marker CD69. Analysis of cytokines secretion, as well as expression of chemokine receptors and transcription factors associated with different Th subsets (Treg, Th1, Th2, Th17 and Tfh) revealed that IL-6-secreting CD4+ T cells cannot be assigned to a conventional Th subset. TCRß gene analysis revealed that IL-6+ and IL-6- CD4+ T cells appear clonally unrelated to each other, suggesting a different specificity of these cells. In line with these observations, adipocytes are capable of enhancing IL-6 production by CD4+ T cells. Thus, IL-6+ CD4+ T cells are TCRαß T cells expressing an activated phenotype potentially resulting from an interplay with adipocytes that could be involved in the inflammatory processes in the OA joint.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Linfócitos T CD4-Positivos/imunologia , Interleucina-6/metabolismo , Idoso , Linfócitos T CD4-Positivos/classificação , Feminino , Humanos , Imunofenotipagem , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/imunologia , Osteoartrite do Joelho/patologia , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Subpopulações de Linfócitos T/imunologia
4.
Arthritis Res Ther ; 19(1): 186, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28800775

RESUMO

BACKGROUND: Obesity is associated with the development and progression of osteoarthritis (OA). Although the infrapatellar fat pad (IFP) could be involved in this association, due to its intracapsular localization in the knee joint, there is currently little known about the effect of obesity on the IFP. Therefore, we investigated cellular and molecular body mass index (BMI)-related features in the IFP of OA patients. METHODS: Patients with knee OA (N = 155, 68% women, mean age 65 years, mean (SD) BMI 29.9 kg/m2 (5.7)) were recruited: IFP volume was determined by magnetic resonance imaging in 79 patients with knee OA, while IFPs and subcutaneous adipose tissue (SCAT) were obtained from 106 patients undergoing arthroplasty. Crown-like structures (CLS) were determined using immunohistochemical analysis. Adipocyte size was determined by light microscopy and histological analysis. Stromal vascular fraction (SVF) cells were characterized by flow cytometry. RESULTS: IFP volume (mean (SD) 23.6 (5.4) mm3) was associated with height, but not with BMI or other obesity-related features. Likewise, volume and size of IFP adipocytes (mean 271 pl, mean 1933 µm) was not correlated with BMI. Few CLS were observed in the IFP, with no differences between overweight/obese and lean individuals. Moreover, high BMI was not associated with higher SVF immune cell numbers in the IFP, nor with changes in their phenotype. No BMI-associated molecular differences were observed, besides an increase in TNFα expression with high BMI. Macrophages in the IFP were mostly pro-inflammatory, producing IL-6 and TNFα, but little IL-10. Interestingly, however, CD206 and CD163 were associated with an anti-inflammatory phenotype, were the most abundantly expressed surface markers on macrophages (81% and 41%, respectively) and CD163+ macrophages had a more activated and pro-inflammatory phenotype than their CD163- counterparts. CONCLUSIONS: BMI-related features usually observed in SCAT and visceral adipose tissue could not be detected in the IFP of OA patients, a fat depot implicated in OA pathogenesis.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Índice de Massa Corporal , Macrófagos/metabolismo , Osteoartrite do Joelho/metabolismo , Patela/metabolismo , Tecido Adiposo/diagnóstico por imagem , Idoso , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Imageamento por Ressonância Magnética , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/diagnóstico por imagem , Obesidade/metabolismo , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/diagnóstico por imagem , Patela/diagnóstico por imagem , Receptores de Superfície Celular/metabolismo
5.
Front Immunol ; 5: 483, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25352844

RESUMO

Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA