Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 7(20): 6108-6119, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37467023

RESUMO

An imbalance in von Willebrand factor (VWF) may either lead to bleeding (von Willebrand disease, VWD) or thrombosis. Both disorders have shortcomings in the currently available treatments. VWF itself could be a potential therapeutic target because of its role in both bleeding and thrombosis. Inhibiting VWF gene expression through allele-selective silencing of VWF with small interfering RNAs (siRNAs) could be a personalized approach to specifically inhibit mutant VWF in VWD or to normalize increased VWF levels in thrombotic disorders without complete VWF knockdown. Therefore, we investigated a method to allele-selectively silence the VWF gene in mice as a therapeutic strategy. Fourteen candidate siRNAs targeting murine Vwf of either the C57BL/6J (B6) or the 129S1/SvImJ (129S) strain were tested in vitro in cells expressing B6- and 129S-Vwf for inhibitory effect and allele-selective potential. Together with a nonselective siVwf, 2 lead candidate siRNAs, siVwf.B6 and siVwf.129S, were further tested in vivo in B6 and 129S mice. Efficient endothelial siRNA delivery was achieved by siRNA encapsulation into 7C1 oligomeric lipid nanoparticles. Treatment with the nonselective siVwf resulted in dose-dependent inhibition of up to 80% of both lung messenger RNA and plasma VWF protein in both mouse strains. In contrast, the allele-selective siVwf.B6 and siVwf.129S were shown to be effective in and selective solely for their corresponding mouse strain. To conclude, we showed efficient endothelial delivery of siRNAs that are highly effective in allele-selective inhibition of Vwf in mice, which constitutes an in vivo proof of principle of allele-selective VWF silencing as a therapeutic approach.

2.
Proc Natl Acad Sci U S A ; 119(37): e2210321119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36001732

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of gene expression, yet their contribution to immune regulation in humans remains poorly understood. Here, we report that the primate-specific lncRNA CHROMR is induced by influenza A virus and SARS-CoV-2 infection and coordinates the expression of interferon-stimulated genes (ISGs) that execute antiviral responses. CHROMR depletion in human macrophages reduces histone acetylation at regulatory regions of ISG loci and attenuates ISG expression in response to microbial stimuli. Mechanistically, we show that CHROMR sequesters the interferon regulatory factor (IRF)-2-dependent transcriptional corepressor IRF2BP2, thereby licensing IRF-dependent signaling and transcription of the ISG network. Consequently, CHROMR expression is essential to restrict viral infection of macrophages. Our findings identify CHROMR as a key arbitrator of antiviral innate immune signaling in humans.


Assuntos
COVID-19 , Proteínas de Ligação a DNA , Imunidade Inata , Vírus da Influenza A , Influenza Humana , RNA Longo não Codificante , SARS-CoV-2 , Fatores de Transcrição , COVID-19/genética , COVID-19/imunologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Influenza Humana/genética , Influenza Humana/imunologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , SARS-CoV-2/imunologia , Fatores de Transcrição/metabolismo
3.
Res Pract Thromb Haemost ; 6(4): e12737, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35734101

RESUMO

Background: Von Willebrand disease was diagnosed in two Afro-Caribbean patients and sequencing of the VWF gene (VWF) revealed the presence of multiple variants located throughout the gene, including variants located in the D4 domain of VWF: p.(Pro2145Thrfs*5) in one patient and p.(Cys2216Phefs*9) in the other patient. Interestingly, D4 variants have not been studied often. Objectives: Our goal was to characterize how the D4 variants p.(Pro2145Thrfs*5) and p.(Cys2216Phefs*9) influenced VWF biosynthesis/secretion and functions using in vitro assays. Methods: Recombinant VWF (rVWF), mutant or wild-type, was produced via transient transfection of the human embryonic kidney cell line 293T. The use of different tags for the wild-type and the mutant allele allowed us to distinguish between the two forms when measuring VWF antigen in medium and cell lysates. Binding of rVWF to its ligands, collagen, factor VIII, ADAMTS13, and platelet receptors was also investigated. Results: Homozygous expression of the p.(Cys2216Phefs*9)-rVWF mutation resulted in an almost complete intracellular retention of the protein. Heterozygous expression led to secretion of almost exclusively wild-type-rVWF, logically capable of normal interaction with the different ligands. In contrast, the p.(Pro2145Thrfs*5)-rVWF exhibited reduced binding to type III collagen and αIIbß3 integrin compared to wild-type-rVWF. Conclusions: We report two mutations of the D4 domains that induced combined qualitative and quantitative defects.

4.
Cell Rep ; 36(10): 109595, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496250

RESUMO

Psychological stress (PS) is associated with systemic inflammation and accelerates inflammatory disease progression (e.g., atherosclerosis). The mechanisms underlying stress-mediated inflammation and future health risk are poorly understood. Monocytes are key in sustaining systemic inflammation, and recent studies demonstrate that they maintain the memory of inflammatory insults, leading to a heightened inflammatory response upon rechallenge. We show that PS induces remodeling of the chromatin landscape and transcriptomic reprogramming of monocytes, skewing them to a primed hyperinflammatory phenotype. Monocytes from stressed mice and humans exhibit a characteristic inflammatory transcriptomic signature and are hyperresponsive upon stimulation with Toll-like receptor ligands. RNA and ATAC sequencing reveal that monocytes from stressed mice and humans exhibit activation of metabolic pathways (mTOR and PI3K) and reduced chromatin accessibility at mitochondrial respiration-associated loci. Collectively, our findings suggest that PS primes the reprogramming of myeloid cells to a hyperresponsive inflammatory state, which may explain how PS confers inflammatory disease risk.


Assuntos
Citocinas/metabolismo , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Inflamação/imunologia , Estresse Fisiológico/imunologia , Animais , Humanos , Imunidade Inata/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Monócitos/metabolismo
5.
Thromb Haemost ; 120(11): 1569-1579, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32803740

RESUMO

Von Willebrand disease (VWD) is the most common inherited bleeding disorder and is mainly caused by dominant-negative mutations in the multimeric protein von Willebrand factor (VWF). These mutations may either result in quantitative or qualitative defects in VWF. VWF is an endothelial protein that is secreted to the circulation upon endothelial activation. Once secreted, VWF multimers bind platelets and chaperone coagulation factor VIII in the circulation. Treatment of VWD focuses on increasing VWF plasma levels, but production and secretion of mutant VWF remain uninterrupted. Presence of circulating mutant VWF might, however, still affect normal hemostasis or functionalities of VWF beyond hemostasis. We hypothesized that inhibition of the production of mutant VWF improves the function of VWF overall and ameliorates VWD phenotypes. We previously proposed the use of allele-specific small-interfering RNAs (siRNAs) that target frequent VWF single nucleotide polymorphisms to inhibit mutant VWF. The aim of this study is to prove the functionality of these allele-specific siRNAs in endothelial colony-forming cells (ECFCs). We isolated ECFCs from a VWD type 2A patient with an intracellular multimerization defect, reduced VWF collagen binding, and a defective processing of proVWF to VWF. After transfection of an allele-specific siRNA that specifically inhibited expression of mutant VWF, we showed amelioration of the laboratory phenotype, with normalization of the VWF collagen binding, improvement in VWF multimers, and enhanced VWF processing. Altogether, we prove that allele-specific inhibition of the production of mutant VWF by siRNAs is a promising therapeutic strategy to improve VWD phenotypes.


Assuntos
Polimorfismo de Nucleotídeo Único , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Doença de von Willebrand Tipo 2/tratamento farmacológico , Fator de von Willebrand/genética , Alelos , Substituição de Aminoácidos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Mutação de Sentido Incorreto , RNA Interferente Pequeno/genética , Transfecção , Doença de von Willebrand Tipo 2/genética , Fator de von Willebrand/análise , Fator de von Willebrand/antagonistas & inibidores
6.
Blood Adv ; 4(13): 2979-2990, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32609846

RESUMO

Copy number variation (CNV) is known to cause all von Willebrand disease (VWD) types, although the associated pathogenic mechanisms involved have not been extensively studied. Notably, in-frame CNV provides a unique opportunity to investigate how specific von Willebrand factor (VWF) domains influence the processing and packaging of the protein. Using multiplex ligation-dependent probe amplification, this study determined the extent to which CNV contributed to VWD in the Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease cohort, highlighting in-frame deletions of exons 3, 4-5, 32-34, and 33-34. Heterozygous in vitro recombinant VWF expression demonstrated that, although deletion of exons 3, 32-34, and 33-34 all resulted in significant reductions in total VWF (P < .0001, P < .001, and P < .01, respectively), only deletion of exons 3 and 32-34 had a significant impact on VWF secretion (P < .0001). High-resolution microscopy of heterozygous and homozygous deletions confirmed these observations, indicating that deletion of exons 3 and 32-34 severely impaired pseudo-Weibel-Palade body (WPB) formation, whereas deletion of exons 33-34 did not, with this variant still exhibiting pseudo-WPB formation similar to wild-type VWF. In-frame deletions in VWD, therefore, contribute to pathogenesis via moderate or severe defects in VWF biosynthesis and secretion.


Assuntos
Doença de von Willebrand Tipo 1 , Doenças de von Willebrand , Variações do Número de Cópias de DNA , Humanos , Corpos de Weibel-Palade , Doenças de von Willebrand/diagnóstico , Doenças de von Willebrand/genética , Fator de von Willebrand/genética
7.
J Thromb Haemost ; 18(10): 2721-2731, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32654420

RESUMO

BACKGROUND: Endothelial colony forming cells (ECFCs) derived from peripheral blood can be used to analyze the pathophysiology of vascular diseases ex vivo. However, heterogeneity is observed between ECFC clones and this variability needs to be understood and standardized for ECFCs to be used as a cell model for applications in vascular studies. OBJECTIVE: Determine reference characteristics of healthy control ECFCs to generate a valid ex vivo model for vascular disease. METHODS: Putative ECFCs (n = 47) derived from 21 individual healthy subjects were studied for cell morphology and specific cell characteristics. Clones were analyzed for the production and secretion of von Willebrand factor (VWF), cell proliferation, and the expression of endothelial cell markers. RESULTS: Based on morphology, clones were categorized into three groups. Group 1 consisted of clones with classic endothelial cell morphology, whereas groups 2 and 3 contained less condensed cells with increasing cell sizes. All clones had comparable endothelial cell surface expression profiles, with low levels of non-endothelial markers. However, a decrease in CD31 and a group-related increase in CD309 and CD45 expression, combined with a decrease in cell proliferation and VWF production and secretion, was observed in clones in group 3 and to a lesser extent in group 2. CONCLUSIONS: We observed group-related variations in endothelial cell characteristics when clones lacked the classic endothelial cell morphology. Despite this variation, clones in all groups expressed endothelial cell surface markers. Provided that clones with similar characteristics are compared, we believe ECFCs are a valid ex vivo model to study vascular disease.


Assuntos
Células Endoteliais , Doenças Vasculares , Membrana Celular , Proliferação de Células , Células Cultivadas , Nível de Saúde , Humanos , Neovascularização Fisiológica , Fator de von Willebrand
8.
J Thromb Haemost ; 17(9): 1544-1554, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31265169

RESUMO

Essentials Endothelial colony forming cells (ECFCs) are a powerful tool to study vascular diseases ex vivo. Separate ECFC lines show variations in morphology and von Willebrand factor-related parameters. Maximum cell density is correlated with von Willebrand factor expression in ECFCs. Variations in ECFC lines are dependent on the age and mesenchymal state of the cells. ABSTRACT: Background Endothelial colony forming cells (ECFCs) are cultured endothelial cells derived from peripheral blood. ECFCs are a powerful tool to study pathophysiological mechanisms underlying vascular diseases, including von Willebrand disease. In prior research, however, large variations between ECFC lines were observed in, among others, von Willebrand factor (VWF) expression. Objective Understand the relation between phenotypic characteristics and VWF-related parameters of healthy control ECFCs. Methods ECFC lines (n = 16) derived from six donors were studied at maximum cell density. Secreted and intracellular VWF antigen were measured by ELISA. The angiogenic capacity of ECFCs was investigated by the Matrigel tube formation assay. Differences in expression of genes involved in angiogenesis, aging, and endothelial to mesenchymal transition (EndoMT) were measured by quantitative PCR. Results Different ECFC lines show variable morphologies and cell density at maximum confluency and cell lines with a low maximum cell density show a mixed and more mesenchymal phenotype. We identified a significant positive correlation between maximum cell density and VWF production, both at protein and mRNA level. Also, significant correlations were observed between maximum cell density and several angiogenic, aging and EndoMT parameters. Conclusions We observed variations in morphology, maximum cell density, VWF production, and angiogenic potential between healthy control ECFCs. These variations seem to be attributable to differences in aging and EndoMT. Because variations correlate with cell density, we believe that ECFCs maintain a powerful tool to study vascular diseases. It is however important to compare cell lines with the same characteristics and perform experiments at maximum cell density.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Fator de von Willebrand/metabolismo , Contagem de Células , Forma Celular , Transdiferenciação Celular , Células Cultivadas , Senescência Celular , Colágeno , Meios de Cultivo Condicionados/química , Combinação de Medicamentos , Células Progenitoras Endoteliais/ultraestrutura , Expressão Gênica , Humanos , Laminina , Mesoderma/citologia , Neovascularização Fisiológica , Proteoglicanas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Corpos de Weibel-Palade/química , Fator de von Willebrand/análise , Fator de von Willebrand/genética
9.
Nucleic Acid Ther ; 29(4): 218-223, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31063435

RESUMO

Recently, our group reported that a small interfering RNA (siRNA) targeting coagulation factor XII (siF12) leads to an unexpected prothrombotic response in a mouse model where venous thrombosis follows inhibition of endogenous anticoagulants. In this study, we aimed to clarify this unexpected response by evaluating the effects of this siF12 (here, siF12-A) on plasma coagulation through thrombin generation (TG). Besides a routine negative control siRNA (siNEG), we included extra siRNA controls: one siRNA similar to siF12-A except for positions 9-11 of the siRNA that are replaced with its complementary base pairs (siF12-AC9/11), and a second siRNA against F12 (siF12-B). Three days after injection, a significant increase in TG peak height was observed solely for animals injected with siF12-A and siF12-AC9/11, which is considered prothrombotic. As this change in coagulation was unrelated to FXII we conclude that it was off-target. For siRNA studies we now recommend to include mismatch siRNA controls, such as the C9/11 mismatch control used in this study, and to consider plasma coagulation in off-target analysis.


Assuntos
Anticoagulantes/farmacologia , Fator XII/genética , RNA Interferente Pequeno/genética , Trombose Venosa/tratamento farmacológico , Animais , Anticoagulantes/química , Coagulação Sanguínea/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA/genética , Modelos Animais de Doenças , Fator XII/antagonistas & inibidores , Humanos , Camundongos , RNA Interferente Pequeno/farmacologia , Trombina/genética , Trombose Venosa/genética , Trombose Venosa/prevenção & controle
10.
Thromb Res ; 159: 65-75, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28987708

RESUMO

Von Willebrand disease (VWD) is a bleeding disorder that is mainly caused by mutations in the multimeric protein von Willebrand factor (VWF). These mutations may lead to deficiencies in plasma VWF or dysfunctional VWF. VWF is a heterogeneous protein and over the past three decades, hundreds of VWF mutations have been identified. In this review we have organized all reported mutations, spanning a timeline from the late eighties until early 2017. This resulted in an overview of 750 unique mutations that are divided over the VWD types 1, 2A, 2B, 2M, 2N and 3. For many of these mutations the disease-causing effects have been characterized in vitro through expression studies, ex vivo by analysis of patient-derived endothelial cells, as well as in animal or (bio)physical models. Here we describe the mechanisms associated with the VWF mutations per VWD type.


Assuntos
Doenças de von Willebrand/genética , Fator de von Willebrand/metabolismo , Humanos , Mutação , Doenças de von Willebrand/patologia
12.
Epigenetics ; 10(12): 1133-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26575099

RESUMO

Facioscapulohumeral muscular dystrophy is caused by incomplete epigenetic repression of the transcription factor DUX4 in skeletal muscle. A copy of DUX4 is located within each unit of the D4Z4 macrosatellite repeat array and its derepression in somatic cells is caused by either repeat array contraction (FSHD1) or by mutations in the chromatin repressor SMCHD1 (FSHD2). While DUX4 expression has thus far only been detected in FSHD muscle and muscle cell cultures, and increases with in vitro myogenic differentiation, the D4Z4 chromatin structure has only been studied in proliferating myoblasts or non-myogenic cells. We here show that SMCHD1 protein levels at D4Z4 decline during muscle cell differentiation and correlate with DUX4 derepression. In FSHD2, but not FSHD1, the loss of SMCHD1 repressor activity is partially compensated by increased Polycomb Repressive Complex 2 (PRC2)-mediated H3K27 trimethylation at D4Z4, a situation that can be mimicked by SMCHD1 knockdown in control myotubes. In contrast, moderate overexpression of SMCHD1 results in DUX4 silencing in FSHD1 and FSHD2 myotubes demonstrating that DUX4 derepression in FSHD is reversible. Together, we show that in FSHD1 and FSHD2 the decline in SMCHD1 protein levels during muscle cell differentiation renders skeletal muscle sensitive to DUX4.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Proteínas de Homeodomínio/metabolismo , Desenvolvimento Muscular/genética , Distrofia Muscular Facioescapuloumeral/genética , Diferenciação Celular/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Metilação de DNA , Regulação da Expressão Gênica , Código das Histonas , Proteínas de Homeodomínio/genética , Humanos , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA