Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 3(11): 100821, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384097

RESUMO

An increasing number of breast cancer patients develop brain metastases (BM). Standard-of-care treatments are largely inefficient, and breast cancer brain metastasis (BCBM) patients are considered untreatable. Immunotherapies are not successfully employed in BCBM, in part because breast cancer is a "cold" tumor and also because the brain tissue has a unique immune landscape. Here, we generate and characterize immunocompetent models of BCBM derived from PyMT and Neu mammary tumors to test how harnessing the pro-senescence properties of doxorubicin can be used to prime the specific immune BCBM microenvironment. We reveal that BCBM senescent cells, induced by doxorubicin, trigger the recruitment of PD1-expressing T cells to the brain. Importantly, we demonstrate that induction of senescence with doxorubicin improves the efficacy of immunotherapy with anti-PD1 in BCBM in a CD8 T cell-dependent manner, thereby providing an optimized strategy to introduce immune-based treatments in this lethal disease. In addition, our BCBM models can be used for pre-clinical testing of other therapeutic strategies in the future.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina/farmacologia , Imunoterapia , Microambiente Tumoral
2.
Cell Mol Life Sci ; 79(2): 82, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35048158

RESUMO

Senescence, the irreversible cell cycle arrest of damaged cells, is accompanied by a deleterious pro-inflammatory senescence-associated secretory phenotype (SASP). Senescence and the SASP are major factors in aging, cancer, and degenerative diseases, and interfere with the expansion of adult cells in vitro, yet little is known about how to counteract their induction and deleterious effects. Paracrine signals are increasingly recognized as important senescence triggers and understanding their regulation and mode of action may provide novel opportunities to reduce senescence-induced inflammation and improve cell-based therapies. Here, we show that the signalling protein WNT3A counteracts the induction of paracrine senescence in cultured human adult mesenchymal stem cells (MSCs). We find that entry into senescence in a small subpopulation of MSCs triggers a secretome that causes a feed-forward signalling cascade that with increasing speed induces healthy cells into senescence. WNT signals interrupt this cascade by repressing cytokines that mediate this induction of senescence. Inhibition of those mediators by interference with NF-κB or interleukin 6 signalling reduced paracrine senescence in absence of WNT3A and promoted the expansion of MSCs. Our work reveals how WNT signals can antagonize senescence and has relevance not only for expansion of adult cells but can also provide new insights into senescence-associated inflammatory and degenerative diseases.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Fenótipo Secretor Associado à Senescência , Via de Sinalização Wnt , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Proteína Wnt3A/metabolismo
3.
Cancers (Basel) ; 13(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805316

RESUMO

With a dismally low median survival of less than two years after diagnosis, Glioblastoma (GBM) is the most lethal type of brain cancer. The standard-of-care of surgical resection, followed by DNA-damaging chemo-/radiotherapy, is often non-curative. In part, this is because individual cells close to the resection border remain alive and eventually undergo renewed proliferation. These residual, therapy-resistant cells lead to rapid recurrence, against which no effective treatment exists to date. Thus, new experimental approaches need to be developed against residual disease to prevent GBM survival and recurrence. Cellular senescence is an attractive area for the development of such new approaches. Senescence can occur in healthy cells when they are irreparably damaged. Senescent cells develop a chronic secretory phenotype that is generally considered pro-tumorigenic and pro-migratory. Age is a negative prognostic factor for GBM stage, and, with age, senescence steadily increases. Moreover, chemo-/radiotherapy can provide an additional increase in senescence close to the tumor. In light of this, we will review the importance of senescence in the tumor-supportive brain parenchyma, focusing on the invasion and growth of GBM in residual disease. We will propose a future direction on the application of anti-senescence therapies against recurrent GBM.

4.
Trends Mol Med ; 24(11): 917-918, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30292430

RESUMO

Senescent cells drive ageing and the associated loss in health and lifespan. Whether this is mediated by systemic signalling remained unclear. Recently, Xu et al. [1] (Nat. Med. 2018;24:1246-1256) answered this question by injecting senescent cells into young mice and observing a long-lasting increase in frailty and mortality.


Assuntos
Fragilidade , Longevidade , Animais , Senescência Celular , Camundongos , Transdução de Sinais
5.
Pharmacol Res ; 130: 322-330, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29471104

RESUMO

Kidney transplants from aged donors are more vulnerable to ischemic injury, suffer more from delayed graft function and have a lower graft survival compared to kidneys from younger donors. On a cellular level, aging results in an increase in cells that are in a permanent cell cycle arrest, termed senescence, which secrete a range of pro-inflammatory cytokines and growth factors. Consequently, these senescent cells negatively influence the local milieu by causing inflammaging, and by reducing the regenerative capacity of the kidney. Moreover, the oxidative damage that is inflicted by ischemia-reperfusion injury during transplantation can induce senescence and accelerate aging. In this review, we describe recent developments in the understanding of the biology of aging that have led to the development of a new class of therapeutic agents aimed at eliminating senescent cells. These compounds have already shown to be able to restore tissue homeostasis in old mice, improve kidney function and general health- and lifespan. Use of these anti-senescence compounds holds great promise to improve the quality of marginal donor kidneys as well as to remove senescent cells induced by ischemia-reperfusion injury. Altogether, senescent cell removal may increase the donor pool, relieving the growing organ shortage and improve long-term transplantation outcome.


Assuntos
Senescência Celular , Transplante de Rim , Animais , Humanos , Resultado do Tratamento
6.
Oncotarget ; 8(50): 86985-86986, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152057
7.
Cell ; 169(1): 132-147.e16, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340339

RESUMO

The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging XpdTTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored.


Assuntos
Envelhecimento/patologia , Antibióticos Antineoplásicos/efeitos adversos , Peptídeos Penetradores de Células/farmacologia , Doxorrubicina/efeitos adversos , Envelhecimento/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proteínas de Ciclo Celular , Linhagem Celular , Sobrevivência Celular , Senescência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Feminino , Fibroblastos/citologia , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Rim/efeitos dos fármacos , Rim/fisiologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Masculino , Camundongos , Síndromes de Tricotiodistrofia/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo
8.
Trends Mol Med ; 23(1): 6-17, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28041565

RESUMO

The potential to reverse aging has long been a tantalizing thought, but has equally been considered mere utopia. Recently, the spotlights have turned to senescent cells as being a culprit for aging. Can these cells be therapeutically eliminated? When so? And is this even safe? Recent developments in the tool box to study senescence have made it possible to begin addressing these questions. It will be especially relevant to identify how senescence impairs tissue rejuvenation and to prospectively design compounds that can both target senescence and stimulate rejuvenation in a safe manner. This review argues that to fulfill this niche, cell-penetrating peptides may provide promising therapeutics. As a candidate approach, the author also highlights the potential of targeting individual FOXO signaling pathways to combat senescence and stimulate tissue rejuventaion.


Assuntos
Envelhecimento , Senescência Celular , Fatores de Transcrição Forkhead/metabolismo , Transdução de Sinais , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Senescência Celular/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos
9.
Aging Cell ; 11(4): 569-78, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22404905

RESUMO

Cellular senescence suppresses cancer by arresting the proliferation of cells at risk for malignant transformation. Recently, senescent cells were shown to secrete numerous cytokines, growth factors, and proteases that can alter the tissue microenvironment and may promote age-related pathology. To identify small molecules that suppress the senescence-associated secretory phenotype (SASP), we developed a screening protocol using normal human fibroblasts and a library of compounds that are approved for human use. Among the promising library constituents was the glucocorticoid corticosterone. Both corticosterone and the related glucocorticoid cortisol decreased the production and secretion of selected SASP components, including several pro-inflammatory cytokines. Importantly, the glucocorticoids suppressed the SASP without reverting the tumor suppressive growth arrest and were efficacious whether cells were induced to senesce by ionizing radiation or strong mitogenic signals delivered by oncogenic RAS or MAP kinase kinase 6 overexpression. Suppression of the prototypical SASP component IL-6 required the glucocorticoid receptor, which, in the presence of ligand, inhibited IL-1α signaling and NF-κB transactivation activity. Accordingly, co-treatments combining glucocorticoids with the glucocorticoid antagonist RU-486 or recombinant IL-1α efficiently reestablished NF-κB transcriptional activity and IL-6 secretion. Our findings demonstrate feasibility of screening for compounds that inhibit the effects of senescent cells. They further show that glucocorticoids inhibit selected components of the SASP and suggest that corticosterone and cortisol, two FDA-approved drugs, might exert their effects in part by suppressing senescence-associated inflammation.


Assuntos
Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Glucocorticoides/farmacologia , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Corticosterona/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Hidrocortisona/farmacologia , Interleucina-1alfa/biossíntese , Interleucina-6/biossíntese , NF-kappa B/metabolismo , Invasividade Neoplásica/prevenção & controle , Fenótipo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Antioxid Redox Signal ; 14(6): 1093-106, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20626320

RESUMO

The forkhead box O (FOXO) family of transcription factors regulates a variety of cellular programs, including cell cycle arrest, reactive oxygen species (ROS) scavenging, and apoptosis, and are of key importance in the decision over cell fate. In animal model systems it has been shown that FOXO is involved in the regulation of long lifespan. FOXO activity is tightly controlled by the insulin signaling pathway and by a multitude of ROS-induced posttranslational modifications. In the cell, ROS levels can be sensed by virtue of stimulatory and inhibitory oxidative modification of cysteine residues within proteins that control various signaling cascades. Recently, it was shown that cysteines in FOXO can also act as sensors of the local redox state. In this review we have outlined the cysteine-dependent redox switches that regulate both the insulin and ROS signaling pathways upstream of FOXO. Further, we describe how FOXO controls ROS levels by transcriptional regulation of a multilayered antioxidant system. Finally, we will discuss how cysteine-based redox signaling to FOXO could play a role in fine-tuning the optimal cellular response to ROS to control organismal lifespan.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Animais , Cisteína/metabolismo , Fatores de Transcrição Forkhead/genética , Humanos , Modelos Biológicos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Cancer Res ; 70(21): 8526-36, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20959475

RESUMO

Oncogene-induced senescence (OIS) is a potent tumor-suppressive mechanism that is thought to come at the cost of aging. The Forkhead box O (FOXO) transcription factors are regulators of life span and tumor suppression. However, whether and how FOXOs function in OIS have been unclear. Here, we show a role for FOXO4 in mediating senescence by the human BRAF(V600E) oncogene, which arises commonly in melanoma. BRAF(V600E) signaling through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase resulted in increased reactive oxygen species levels and c-Jun NH(2) terminal kinase-mediated activation of FOXO4 via its phosphorylation on Thr(223), Ser(226), Thr(447), and Thr(451). BRAF(V600E)-induced FOXO4 phosphorylation resulted in p21(cip1)-mediated cell senescence independent of p16(ink4a) or p27(kip1). Importantly, melanocyte-specific activation of BRAF(V600E) in vivo resulted in the formation of skin nevi expressing Thr(223)/Ser(226)-phosphorylated FOXO4 and elevated p21(cip1). Together, these findings support a model in which FOXOs mediate a trade-off between cancer and aging.


Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Melanócitos/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/patologia , Fatores de Transcrição/metabolismo , Animais , Apoptose , Western Blotting , Proteínas de Ciclo Celular , Proliferação de Células , Ensaio de Unidades Formadoras de Colônias , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27 , Fatores de Transcrição Forkhead , Humanos , Marcação In Situ das Extremidades Cortadas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Melanócitos/patologia , Melanoma/genética , Melanoma/metabolismo , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas B-raf/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
FASEB J ; 24(11): 4271-80, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20570964

RESUMO

In this study, we searched for proteins regulating the tumor suppressor and life-span regulator FOXO4. Through an unbiased tandem-affinity purification strategy combined with mass spectrometry, we identified the heterodimer Ku70/Ku80 (Ku), a DNA double-strand break repair component. Using biochemical interaction studies, we found Ku70 to be necessary and sufficient for the interaction. FOXO4 mediates its tumor-suppressive function in part through transcriptional regulation of the cell cycle arrest p27(kip1) gene. Immunoblotting, luciferase reporter assays, and flow cytometry showed that Ku70 inhibited FOXO4-mediated p27(kip1) transcription and cell cycle arrest induction by >40%. In contrast, Ku70 RNAi but not control RNAi significantly increased p27(kip1) transcription. In addition, in contrast to wild-type mouse embryonic stem (ES) cells, Ku70(-/-) ES cells showed significantly increased FOXO activity, which was rescued by Ku70 reexpression. Immunofluorescence studies demonstrated that Ku70 sequestered FOXO4 in the nucleus. Interestingly, the Ku70-FOXO4 interaction stoichiometry followed a nonlinear dose-response curve by hydrogen peroxide-generated oxidative stress. Low levels of oxidative stress increased interaction stoichiometry up to 75%, peaking at 50 µM, after which dissociation occurred. Because the Ku70 ortholog in the roundworm Caenorhabditis elegans was shown to regulate life span involving C. elegans FOXO, our findings suggest a conserved critical Ku70 role for FOXO function toward coordination of a survival program, regulated by the magnitude of oxidative damage.


Assuntos
Antígenos Nucleares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Complexos Multiproteicos , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Animais , Antígenos Nucleares/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Autoantígeno Ku , Camundongos , Complexos Multiproteicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espectrometria de Massas em Tandem
14.
Nat Chem Biol ; 5(9): 664-72, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19648934

RESUMO

Cellular damage invoked by reactive oxygen species plays a key role in the pathobiology of cancer and aging. Forkhead box class O (FoxO) transcription factors are involved in various cellular processes including cell cycle regulation, apoptosis and resistance to reactive oxygen species, and studies in animal models have shown that these transcription factors are of vital importance in tumor suppression, stem cell maintenance and lifespan extension. Here we report that the activity of FoxO in human cells is directly regulated by the cellular redox state through a unique mechanism in signal transduction. We show that reactive oxygen species induce the formation of cysteine-thiol disulfide-dependent complexes of FoxO and the p300/CBP acetyltransferase, and that modulation of FoxO biological activity by p300/CBP-mediated acetylation is fully dependent on the formation of this redox-dependent complex. These findings directly link cellular redox status to the activity of the longevity protein FoxO.


Assuntos
Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Sobrevivência Celular , Cisteína/genética , Fatores de Transcrição Forkhead , Humanos , Lisina/genética , Lisina/metabolismo , Camundongos , Mutação , Oxirredução , Peróxidos/farmacologia , Transdução de Sinais , Tiorredoxinas/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição de p300-CBP/genética
15.
Cancer Res ; 68(18): 7597-605, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18794148

RESUMO

The Forkhead box O (FOXO) protein family is an evolutionarily conserved subclass of transcription factors recently identified as bona fide tumor suppressors. Preventing the accumulation of cellular damage due to oxidative stress is thought to underlie its tumor-suppressive role. Oxidative stress, in turn, also feedback controls FOXO4 function. Regulation of this process, however, is poorly understood but may be relevant to the ability of FOXO to control tumor suppression. Here, we characterize novel FOXO4 phosphorylation sites after increased cellular oxidative stress and identify the isomerase Pin1, a protein frequently found to be overexpressed in cancer, as a critical regulator of p27(kip1) through FOXO4 inhibition. We show that Pin1 requires these phosphorylation events to act negatively on FOXO4 transcriptional activity. Consistent with this, oxidative stress induces binding of Pin1 to FOXO, thereby attenuating its monoubiquitination, a yet uncharacterized mode of substrate modulation by Pin1. We have previously shown that monoubiquitination is involved in controlling nuclear translocation in response to cellular stress, and indeed, Pin1 prevents nuclear FOXO4 accumulation. Interestingly, Pin1 acts on FOXO through stimulation of the activity of the deubiquitinating enzyme HAUSP/USP7. Ultimately, this results in decreased transcriptional activity towards target genes, including the cell cycle arrest gene p27(kip1). Notably, in a primary human breast cancer panel, low p27(kip1) levels inversely correlated with Pin1 expression. Thus, Pin1 is identified as a novel negative FOXO regulator, interconnecting FOXO phosphorylation and monoubiquitination in response to cellular stress to regulate p27(kip1).


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Peptidilprolil Isomerase/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Células 3T3 , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Fatores de Transcrição Forkhead , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , Mutagênese Sítio-Dirigida , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Fosforilação , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de Ubiquitina , Ubiquitinação/efeitos dos fármacos
16.
PLoS One ; 3(7): e2819, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-18665269

RESUMO

BACKGROUND: The Forkhead box O (FOXO) class of transcription factors are involved in the regulation of several cellular responses including cell cycle progression and apoptosis. Furthermore, in model organisms FOXOs act as tumor suppressors and affect aging. Previously, we noted that FOXOs and p53 are remarkably similar within their spectrum of regulatory proteins. For example, the de-ubiquitinating enzyme USP7 removes ubiquitin from both FOXO and p53. However, Skp2 has been identified as E3 ligase for FOXO1, whereas Mdm2 is the prime E3 ligase for p53. PRINCIPAL FINDINGS/METHODOLOGY: Here we provide evidence that Mdm2 acts as an E3 ligase for FOXO as well. In vitro incubation of Mdm2 and FOXO results in ATP-dependent (multi)mono-ubiquitination of FOXO similar to p53. Furthermore, in vivo co-expression of Mdm2 and FOXO induces FOXO mono-ubiquitination and consistent with this result, siRNA-mediated depletion of Mdm2 inhibits mono-ubiquitination of FOXO induced by hydrogen peroxide. Regulation of FOXO ubiquitination by Mdm2 is likely to be direct since Mdm2 and FOXO co-immunoprecipitate. In addition, Mdm2-mediated ubiquitination regulates FOXO transcriptional activity. CONCLUSIONS/SIGNIFICANCE: These data identify Mdm2 as a novel E3 ligase for FOXOs and extend the analogous mode of regulation between FOXO and p53.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Camundongos , Modelos Biológicos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA