Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 171-172: 36-52, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22381008

RESUMO

The internal structure of casein micelles was studied by calculating the small-angle neutron and X-ray scattering and static light scattering spectrum (SANS, SAXS, SLS) as a function of the scattering contrast and composition. We predicted experimental SANS, SAXS, SLS spectra self consistently using independently determined parameters for composition size, polydispersity, density and voluminosity. The internal structure of the casein micelles, i.e. how the various components are distributed within the casein micelle, was modeled according to three different models advocated in the literature; i.e. the classical sub-micelle model, the nanocluster model and the dual binding model. In this paper we present the essential features of these models and combine new and old experimental SANS, SAXS, SLS and DLS scattering data with new calculations that predict the spectra. Further evidence on micellar substructure was obtained by internally cross linking the casein micelles using transglutaminase, which led to casein nanogel particles. In contrast to native casein micelles, the nanogel particles were stable in 6M urea and after sequestering the calcium using trisodium citrate. The changed scattering properties were again predicted self consistently. An important result is that the radius of gyration is independent of contrast, indicating that the mass distribution within a casein micelle is homogeneous. Experimental contrast is predicted quite well leading to a match point at a D(2)O volume fraction of 0.41 ratio in SANS. Using SANS and SAXS model calculations it is concluded that only the nanocluster model is capable of accounting for the experimental scattering contrast variation data. All features and trends are predicted self consistently, among which the 'famous' shoulder at a wave vector value Q=0.35 nm(-1) In the nanocluster model, the casein micelle is considered as a (homogeneous) matrix of caseins in which the colloidal calcium phosphate (CCP) nanoclusters are dispersed as very small (about 2 nm) "cherry stones" at an average distance of 18.6 nm. Attached to the surface of the nanoclusters are the centers of phosphorylation (3-5 nearby phosphorylated amino acid residues) of the caseins. The tails of the caseins, much larger than the CCP clusters, then associate to form a protein matrix, which can be viewed as polymer mesh with density fluctuations at the 2 nm scale. The association of the tails is driven by a collection of weak interactions. We explicitly use weak interactions as a collective term for hydrophobic interactions, hydrogen bonding, ion bonding, weak electrostatic Van der Waals attraction and other factors (but not the strong calcium phosphate interaction) leading to self association. The association is highly cooperative and originates in the weak interactions. It is the cooperativety that leads to a stable casein micelle. Invariably, κ-casein is thought to limit the process of self association leading to stabilization of the native casein micelle.


Assuntos
Caseínas/química , Micelas , Modelos Moleculares , Difração de Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo
2.
Langmuir ; 27(7): 3474-84, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21366278

RESUMO

Aqueous lubrication is currently at the forefront of tribological research due to the desire to learn and potentially mimic how nature lubricates biotribological contacts. We focus here on understanding the lubrication properties of naturally occurring polysaccharides in aqueous solution using a combination of tribology, adsorption, and rheology. The polysaccharides include pectin, xanthan gum, gellan, and locus bean gum that are all widely used in food and nonfood applications. They form rheologically complex fluids in aqueous solution that are both shear thinning and elastic, and their normal stress differences at high shear rates are found to be characteristic of semiflexible/rigid molecules. Lubrication is studied using a ball-on-disk tribometer with hydrophobic elastomer surfaces, mimicking biotribological contacts, and the friction coefficient is measured as a function of speed across the boundary, mixed, and hydrodynamic lubrication regimes. The hydrodynamic regime, where the friction coefficient increases with increasing lubricant entrainment speed, is found to depend on the viscosity of the polysaccharide solutions at shear rates of around 10(4) s(-1). The boundary regime, which occurs at the lowest entrainment speeds, depends on the adsorption of polymer to the substrate. In this regime, the friction coefficient for a rough substrate (400 nm rms roughness) is dependent on the dry mass of polymer adsorbed to the surface (obtained from surface plasmon resonance), while for a smooth substrate (10 nm rms roughness) the friction coefficient is strongly dependent on the hydrated wet mass of adsorbed polymer (obtained from quartz crystal microbalance, QCM-D). The mixed regime is dependent on both the adsorbed film properties and lubricant's viscosity at high shear rates. In addition, the entrainment speed where the friction coefficient is a minimum, which corresponds to the transition between the hydrodynamic and mixed regime, correlates linearly with the ratio of the wet mass and viscosity at ∼10(4) s(-1) for the smooth surface. These findings are independent of the different polysaccharides used in the study and their different viscoelastic flow properties.


Assuntos
Lubrificação , Polissacarídeos/química , Reologia , Soluções/química , Adsorção , Técnicas de Microbalança de Cristal de Quartzo , Ressonância de Plasmônio de Superfície , Viscosidade
3.
Biomacromolecules ; 8(4): 1300-5, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17328570

RESUMO

The stability of internally cross-linked casein micelles against disruption by urea (which disrupts hydrogen bonds and hydrophobic interactions) and trisodium citrate (which sequesters micellar calcium phosphate) was investigated. Addition of urea (0-6 mol L-1) and/or citrate (0-50 mmol L-1) progressively reduced the turbidity of a suspension of casein micelles cross-linked by transglutaminase and increased particle size (determined by dynamic and static light scattering and small-angle neutron scattering), which was attributed to swelling of the micelles. Furthermore, model calculations, assuming a completely stable casein network, were performed to describe the decreases in turbidity on addition of urea and citrate. Measured and described turbidity values are in agreement, indicating that cross-linking of casein micelles with transglutaminase results in a covalently bound protein network, which is entirely stable to disruption by urea and/or citrate. This may offer potential applications for the use of cross-linked casein micelles as biocompatible protein micro-gel particles.


Assuntos
Caseínas/química , Micelas , Difração de Nêutrons , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Transglutaminases/química
4.
J Dairy Res ; 74(2): 194-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17291391

RESUMO

In the study presented in this article, the influence of added alpha-lactalbumin and beta-lactoglobulin on the changes that occur in casein micelles at 250 and 300 MPa were investigated by in-situ measurement of light transmission. Light transmission of a serum protein-free casein micelle suspension initially increased with increasing treatment time, indicating disruption of micelles, but prolonged holding of micelles at high pressure partially reversed HP-induced increases in light transmission, suggesting reformation of micellar particles of colloidal dimensions. The presence of alpha-la and/or beta-lg did not influence the rate and extent of micellar disruption and the rate and extent of reformation of casein particles. These data indicate that reformation of casein particles during prolonged HP treatment occurs as a result of a solvent-mediated association of the micellar fragments. During the final stages of reformation, kappa-casein, with or without denatured whey proteins attached, associates on the surface of the reformed particle to provide steric stabilisation.


Assuntos
Caseínas/química , Micelas , Proteínas do Leite/farmacologia , Animais , Caseínas/efeitos dos fármacos , Bovinos , Leite/fisiologia , Pressão , Proteínas do Soro do Leite
5.
J Agric Food Chem ; 54(16): 5903-9, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16881693

RESUMO

In this study, factors influencing the disruption and aggregation of casein micelles during high-pressure (HP) treatment at 250 MPa for 40 min were studied in situ in serum protein-free casein micelle suspensions. In control milk, light transmission increased with treatment time for approximately 15 min, after which a progressive partial reversal of the HP-induced increase in light transmission occurred, indicating initial HP-induced disruption of casein micelles, followed by reformation of casein aggregates from micellar fragments. The extent of HP-induced micellar disruption was negatively correlated with the concentration of casein micelles, milk pH, and levels of added ethanol, calcium chloride, or sodium chloride and positively correlated with the level of added sodium phosphate. The reformation of casein aggregates during prolonged HP treatment did not occur when HP-induced disruption of casein micelles was limited (<60%) or very extensive (>95%) and was promoted by a low initial milk pH or added sodium phosphate, sodium chloride, or ethanol. On the basis of these findings, a mechanism for HP-induced disruption of casein micelles and subsequent aggregation of micellar fragments is proposed, in which the main element appears to be HP-induced solubilization of micellar calcium phosphate.


Assuntos
Caseínas/química , Micelas , Leite/química , Animais , Cloreto de Cálcio/administração & dosagem , Fosfatos de Cálcio/química , Etanol/administração & dosagem , Concentração de Íons de Hidrogênio , Fosfatos/administração & dosagem , Pressão , Solubilidade
7.
J Dairy Res ; 73(3): 312-7, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16674841

RESUMO

The influence of ethanol on the rennet-induced coagulation of milk was studied to investigate potential synergistic effects of these two mechanisms of destabilisation on the casein micelles. Addition of 5% (v/v) ethanol reduced the rennet coagulation time (RCT) of milk, whereas higher levels of ethanol (10-20%, v/v) progressively increased RCT. The temperature at which milk was coagulable by rennet decreased with increasing ethanol content of the milk. The primary stage of rennet coagulation, i.e., the enzymatic hydrolysis of kappa-casein, was progressively slowed with increasing ethanol content (5-20%, v/v), possibly due to ethanol-induced conformational changes in the enzyme molecule. The secondary stage of rennet coagulation, i.e., the aggregation of kappa-casein-depleted micelles, was enhanced in the presence of 5-15% ethanol, the effect being largest at 5% ethanol. Enhanced aggregation of micelles is probably due to an ethanol-induced decrease in inter-micellar steric repulsion. These results indicate an interrelationship between the effects of ethanol and chymosin on the casein micelles in milk, which may have interesting implications for properties of dairy products.


Assuntos
Caseínas/metabolismo , Quimosina/farmacocinética , Etanol/farmacologia , Leite/enzimologia , Animais , Bovinos , Quimosina/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Micelas , Leite/química , Reologia , Fatores de Tempo
8.
J Dairy Sci ; 87(5): 1167-76, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15290963

RESUMO

Heated milk consists of a mixture of whey protein-coated casein micelles and soluble whey protein aggregates. The acid-induced gelation properties of heated milk are consistently different from those of unheated milk--i.e., a shift in gelation pH, stronger gels, and a different microstructure of the gels. In this study we investigated the role of the different fractions of denatured whey proteins on the acid-induced gelation, the gel hardness, and the microstructure. Both whey protein fractions contribute to the observed shift in gelation pH, although by a different mechanism. Obtaining gels with high gel hardness occurs most effectively when all denatured whey proteins are present as whey protein aggregates. It was observed that disulfide bridge exchange reactions during the acid-induced gelation at ambient temperature play an important role for both whey protein fractions. Additionally, disulfide interactions seem to occur between the aggregates and the casein micelles during the gel state. In this study, we show the development of a new approach for confocal scanning laser microscopy measurements--i.e., separate staining of the proteins in milk. By using this method, we were able to determine that, although whey protein aggregates are not linked to the casein micelles, they nevertheless gel at the same moment. This work adds to a better understanding of the role of denatured whey proteins during acid-induced gelation and could improve the effective use of whey proteins.


Assuntos
Caseínas/química , Géis/química , Proteínas do Leite/química , Animais , Caseínas/ultraestrutura , Dissulfetos/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Micelas , Microscopia Confocal , Leite/química , Proteínas do Leite/ultraestrutura , Solubilidade , Proteínas do Soro do Leite
9.
Langmuir ; 20(15): 6389-95, 2004 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-15248727

RESUMO

Structural properties of whey protein (WP)/gum arabic (GA) coacervates were investigated by measuring the diffusivity of WP and GA in their coacervate phase as a function of pH by means of three different complementary techniques. The combination of these measurements revealed new insights into the structure of coacervates. Nuclear magnetic resonance (NMR) measured the self-diffusion coefficient of the GA in the coacervate phase prepared at various pH values. Fluorescence recovery after photobleaching (FRAP) was measured using a confocal scanning laser microscope. The WP and GA were covalently labeled with two different dyes. The time of fluorescence recovery, related to the inverse of the diffusion coefficient, was evaluated from the measurements, and the diffusivity of the WP and GA on a long time scale could be individually estimated at each pH value. Diffusing wave spectroscopy (DWS) combined with transmission measurement was carried out in the coacervate phase, and the diffusion coefficient, corresponding to the averaged diffusion of all particles that scattered in the system, was calculated as a function of pH. Independently of the technique used, the results showed that the diffusion of the WP and GA within the coacervate phase was reduced as compared to a diluted biopolymer mixture. NMR, DWS, and FRAP measurements gave similar results, indicating that the biopolymers moved the slowest in the coacervate matrix at pH 4.0-4.2. It is assumed that the diffusion of the WP and GA is reduced because of a higher electrostatic interaction between the biopolymers. Furthermore, FRAP results showed that in the coacervate phase WP molecules diffused 10 times faster than GA molecules. This result is very relevant because it shows that WP and GA move independently in the liquid coacervate phase. Finally, DWS measurements revealed that the coacervate phase rearranged with time, as evidenced by a decrease of the diffusion coefficient and a loss of the turbidity of the sample. A more homogeneous transparent coacervate phase was obtained after a few days/weeks. Faster rearrangement was obtained at pH 3.0 and 3.5 than at higher pH values.


Assuntos
Goma Arábica/química , Proteínas do Leite/química , Difusão , Recuperação de Fluorescência Após Fotodegradação/métodos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Sensibilidade e Especificidade , Propriedades de Superfície , Fatores de Tempo , Proteínas do Soro do Leite
10.
Langmuir ; 20(16): 6841-6, 2004 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-15274593

RESUMO

Self-assembly of alpha-lactalbumin after partial hydrolysis by a protease from Bacillus licheniformis can result in nanotubular structures, which show many similarities to microtubules. Calcium plays a crucial role in this process. The objective of this investigation was to study the role of calcium in more detail. The kinetics of the hydrolysis step and the self-assembly step were monitored by respectively liquid chromatography-mass spectrometry and dynamic light scattering. The microstructure of the gels finally formed was investigated by transmission electron microscopy. This investigation demonstrates that calcium accelerated the kinetics of the self-assembly, but it had no effect on the hydrolysis kinetics. As a result of the accelerated self-assembly kinetics at a high calcium concentration, the time of gelation decreased as well. A minimum concentration of calcium needed to obtain the tubular alpha-lactalbumin structures was determined. Below R = 1.5 (mole calcium/mole alpha-lactalbumin), turbid gels with randomlike structure were obtained. Between R = 1.5 and R = 6, translucent gels with a fine stranded network of tubules were formed, while higher calcium concentrations had a negative effect on the tubule formation, resulting in amorphous structures. The optimum calcium concentration for alpha-lactalbumin nanotube formation seemed to be around R = 3.


Assuntos
Cálcio/química , Lactalbumina/química , Hidrólise , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo
11.
J Agric Food Chem ; 52(11): 3550-5, 2004 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-15161229

RESUMO

The formation of electrostatic complexes of whey protein (WP) and a nongelling carrageenan (CG) was investigated as a function of pH, ionic strength, temperature, and protein-to-polysaccharide (Pr:Ps) ratio. On lowering the pH, the formation of soluble WP/CG complexes was initiated at pH(c) and insoluble complexes at pH(phi), below which precipitation occurred. The values of the transition pH varied as a function of the ionic strength. It was shown that at [NaCl] = 45 mM, the value of pH(phi) was the highest, showing that the presence of monovalent ions was favorable to the formation of complexes by screening the residual negative charges of the CG. When CaCl(2) was added to the mixtures, complexes of WP/CG were formed up to pH 8 via calcium bridging. The electrostatic nature of the primary interaction was confirmed from the slight effect of temperature on the pH(phi). Increasing the Pr:Ps ratio led to an increase of the pH(phi) until a ratio of 30:1 (w/w), at which saturation of the CG chain seemed to be reached. The behavior of WP/CG complexes was investigated at a low Pr:Ps ratio, when the biopolymers were mixed directly at low pH. It resulted in an increase of the pH of the mixture, as compared to the initial pH of the separate WP and CG solutions. The pH increase was accompanied by a decrease in conductivity. The trapping of protons inside the complex probably resulted from a residual negative charge on the CG. If NaCl was present in the mixture, the complex took up the Na(+) ions instead of the H(+) ions.


Assuntos
Carragenina/química , Proteínas do Leite/química , Concentração de Íons de Hidrogênio , Proteínas do Leite/análise , Concentração Osmolar , Polissacarídeos/análise , Cloreto de Sódio , Eletricidade Estática , Temperatura , Proteínas do Soro do Leite
12.
J Agric Food Chem ; 52(3): 623-31, 2004 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-14759159

RESUMO

The process of cold gelation of ovalbumin and the properties of the resulting cold-set gels were compared to those of whey protein isolate. Under the chosen heating conditions, most protein was organized in aggregates. For both protein preparations, the aggregates consisted of covalently linked monomers. Both types of protein aggregates had comparable numbers of thiol groups exposed at their surfaces but had clearly different shapes. During acid-induced gelation, the characteristic ordering caused by the repulsive character disappeared and was replaced by a random distribution. This process did not depend on aggregate characteristics and probably applies to any type of protein aggregate. Covalent bonds are the main determinants of the gel hardness. The formation of additional disulfide bonds during gelation depended on the number and accessibility of thiol groups and disulfide bonds in the molecule and was found to clearly differ between the proteins studied. However, upon blocking of the thiol groups, long fibrillar structures of ovalbumin contribute significantly to gel hardness, demonstrating the importance of aggregate shape.


Assuntos
Temperatura Baixa , Dissulfetos/química , Géis/química , Proteínas do Leite/química , Ovalbumina/química , Reagentes de Ligações Cruzadas , Concentração de Íons de Hidrogênio , Microscopia Eletrônica , Reologia , Compostos de Sulfidrila/química , Proteínas do Soro do Leite
13.
Protein Sci ; 13(3): 810-21, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14978312

RESUMO

Hydrophobin SC3 is a protein with special self-association properties that differ depending on whether it is in solution, on an air/water interface or on a solid surface. Its self-association on an air/water interface and solid surface have been extensively characterized. The current study focuses on its self-association in water because this is the starting point for the other two association processes. Size-exclusion chromatography was used to fractionate soluble-state SC3. Real-time multiangular light scattering detection of the eluate indicated that SC3 mainly exists as a dimer in buffer, accompanied with a small amount of monomer, tetramer, and larger aggregates. Dimeric SC3 has very likely an elongated shape, as indicated by the hydrodynamic radius determined by using dynamic light scattering (DLS) and fluorescence anisotropy measurements on dansyl-labeled SC3. Size-exclusion chromatography experiments also indicated that the protein oligomerizes very slowly at low temperature (4 degrees C) but rather rapidly at room temperature. Ionic strength plays an important role in the oligomerization; a short-lived monomeric SC3 species could be observed in pure water. Oligomerization was not affected by low pH but was accelerated by high pH. Fluorescence resonance energy transfer showed that dissociation occurred when the protein concentration was lowered; a large population of oligomers, presumably dimers, dissociate when the protein concentration is <4.5 microg/mL. This value is similar to the critical concentration for SC3 self-assembly. Therefore, dimeric SC3 is indicated to be the building block for both aggregation in solution and self-assembly at hydrophobic/hydrophilic interfaces.


Assuntos
Proteínas Fúngicas/química , Água/química , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Modelos Químicos , Ressonância Magnética Nuclear Biomolecular , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Espalhamento de Radiação , Solubilidade , Espectrometria de Fluorescência , Ácido Trifluoracético/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA