Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 149(7): 3729-3738, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35980484

RESUMO

PURPOSE: TMEM176B was recently described as a negative modulator of Nlrp3 inflammasome activation in mice. In the mouse model, the inhibition of TMEM176B leads to an increased anti-tumoral activity which is dependent on Nlrp3. Since we have recently shown that single nucleotide variants (SNPs) in inflammasome genes, including NLRP3, significantly affect colorectal cancer (CRC) prognosis, we proposed to investigate here the association between genetic variants in TMEM176B and CRC prognosis. METHODS: Considering that, up to now, no genetic study analyzing this gene in humans exists, we selected possible functional SNPs and genotyped them in a cohort of CRC patients submitted to surgery and followed up for more than 10 years. Genotype-guided assays were realized to evaluate the effect of the variant on NLRP3 inflammasome activation. Gene expression from The Cancer Genome Atlas (TCGA) cohort was analyzed to valid possible prognostic and predictive features. RESULTS: We identified the Ala134Thr variant (rs2072443) in TMEM176B as a protective factor for CRC prognosis. This SNP is associated with decreased gene expression and with an increased activation of NLRP3 inflammasome, at least in monocytes and dendritic cells. Furthermore, low TMEM176B expression is associated with higher overall survival. CONCLUSION: Altogether, these findings supported the role of TMEM176B in NLRP3 inflammasome biology and for the first time demonstrated the genetic association between rs2072443 and CRC in humans.


Assuntos
Neoplasias Colorretais , Inflamassomos , Humanos , Animais , Camundongos , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Prognóstico , Genótipo , Neoplasias Colorretais/genética , Proteínas de Membrana/genética
2.
Front Immunol ; 12: 604975, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868225

RESUMO

Tuberculosis (TB) remains a serious public health burden worldwide. TB is an infectious disease caused by the Mycobacterium tuberculosis Complex. Innate immune response is critical for controlling mycobacterial infection. NOD-like receptor pyrin domain containing 3/ absent in melanoma 2 (NLRP3/AIM2) inflammasomes are suggested to play an important role in TB. NLRP3/AIM2 mediate the release of pro-inflammatory cytokines IL-1ß and IL-18 to control M. tuberculosis infection. Variants of genes involved in inflammasomes may contribute to elucidation of host immune responses to TB infection. The present study evaluated single-nucleotide variants (SNVs) in inflammasome genes AIM2 (rs1103577), CARD8 (rs2009373), and CTSB (rs1692816) in 401 patients with pulmonary TB (PTB), 133 patients with extrapulmonary TB (EPTB), and 366 healthy control (HC) subjects with no history of TB residing in the Amazonas state. Quantitative Real Time PCR was performed for allelic discrimination. The SNV of AIM2 (rs1103577) is associated with protection for PTB (padj: 0.033, ORadj: 0.69, 95% CI: 0.49-0.97). CTSB (rs1692816) is associated with reduced risk for EPTB when compared with PTB (padj: 0.034, ORadj: 0.50, 95% CI: 0.27-0.94). Serum IL-1ß concentrations were higher in patients with PTB than those in HCs (p = 0,0003). The SNV rs1103577 of AIM2 appeared to influence IL-1ß release. In a dominant model, individuals with the CC genotype (mean 3.78 ± SD 0.81) appeared to have a higher level of IL-1ß compared to carriers of the T allele (mean 3.45 ± SD 0.84) among the patients with PTB (p = 0,0040). We found that SNVs of AIM2 and CTSB were associated with TB, and the mechanisms involved in this process require further study.


Assuntos
Proteínas de Ligação a DNA/genética , Resistência à Doença/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Tuberculose/etiologia , Alelos , Brasil , Proteínas Adaptadoras de Sinalização CARD/genética , Estudos de Casos e Controles , Citocinas/metabolismo , Feminino , Genótipo , Humanos , Masculino , Mycobacterium tuberculosis , Razão de Chances
3.
Cell Death Dis ; 12(2): 158, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547278

RESUMO

Uric acid (UA), a product of purine nucleotide degradation able to initiate an immune response, represents a breakpoint in the evolutionary history of humans, when uricase, the enzyme required for UA cleavage, was lost. Despite being inert in human cells, UA in its soluble form (sUA) can increase the level of interleukin-1ß (IL-1ß) in murine macrophages. We, therefore, hypothesized that the recognition of sUA is achieved by the Naip1-Nlrp3 inflammasome platform. Through structural modelling predictions and transcriptome and functional analyses, we found that murine Naip1 expression in human macrophages induces IL-1ß expression, fatty acid production and an inflammation-related response upon sUA stimulation, a process reversed by the pharmacological and genetic inhibition of Nlrp3. Moreover, molecular interaction experiments showed that Naip1 directly recognizes sUA. Accordingly, Naip may be the sUA receptor lost through the human evolutionary process, and a better understanding of its recognition may lead to novel anti-hyperuricaemia therapies.


Assuntos
Inflamassomos/metabolismo , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Inibidora de Apoptose Neuronal/metabolismo , Ácido Úrico/farmacologia , Animais , Ácidos Graxos/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Interleucina-1beta/metabolismo , Macaca mulatta , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína Inibidora de Apoptose Neuronal/genética , Ligação Proteica , Células THP-1 , Ácido Úrico/metabolismo
4.
Clin Sci (Lond) ; 135(5): 687-701, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33620070

RESUMO

Muscle tissue damage is one of the local effects described in bothropic envenomations. Bothropstoxin-I (BthTX-I), from Bothrops jararacussu venom, is a K49-phospholipase A2 (PLA2) that induces a massive muscle tissue injury, and, consequently, local inflammatory reaction. The NLRP3 inflammasome is a sensor that triggers inflammation by activating caspase 1 and releasing interleukin (IL)-1ß and/or inducing pyroptotic cell death in response to tissue damage. We, therefore, aimed to address activation of NLRP3 inflammasome by BthTX-I-associated injury and the mechanism involved in this process. Intramuscular injection of BthTX-I results in infiltration of neutrophils and macrophages in gastrocnemius muscle, which is reduced in NLRP3- and Caspase-1-deficient mice. The in vitro IL-1ß production induced by BthTX-I in peritoneal macrophages (PMs) requires caspase 1/11, ASC and NLRP3 and is dependent on adenosine 5'-triphosphate (ATP)-induced K+ efflux and P2X7 receptor (P2X7R). BthTX-I induces a dramatic release of ATP from C2C12 myotubes, therefore representing the major mechanism for P2X7R-dependent inflammasome activation in macrophages. A similar result was obtained when human monocyte-derived macrophages (HMDMs) were treated with BthTX-I. These findings demonstrated the inflammatory effect of BthTX-I on muscle tissue, pointing out a role for the ATP released by damaged cells for the NLRP3 activation on macrophages, contributing to the understanding of the microenvironment of the tissue damage of the Bothrops envenomation.


Assuntos
Venenos de Crotalídeos/toxicidade , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trifosfato de Adenosina , Animais , Bothrops , Caspase 1/deficiência , Linhagem Celular , Humanos , Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/patologia , Doenças Musculares/induzido quimicamente , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Receptores Purinérgicos P2X7
5.
Clin Sci (Lond) ; 135(1): 19-34, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33399849

RESUMO

Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by insulin-producing pancreatic ß-cell destruction and hyperglycemia. While monocytes and NOD-like receptor family-pyrin domain containing 3 (NLRP3) are associated with T1D onset and development, the specific receptors and factors involved in NLRP3 inflammasome activation remain unknown. Herein, we evaluated the inflammatory state of resident peritoneal macrophages (PMs) from genetically modified non-obese diabetic (NOD), NLRP3-KO, wild-type (WT) mice and in peripheral blood mononuclear cells (PBMCs) from human T1D patients. We also assessed the effect of docosahexaenoic acid (DHA) on the inflammatory status. Macrophages from STZ-induced T1D mice exhibited increased inflammatory cytokine/chemokine levels, nitric oxide (NO) secretion, NLRP3 and iNOS protein levels, and augmented glycolytic activity compared to control animals. In PMs from NOD and STZ-induced T1D mice, DHA reduced NO production and attenuated the inflammatory state. Furthermore, iNOS and IL-1ß protein expression levels and NO production were lower in the PMs from diabetic NLRP3-KO mice than from WT mice. We also observed increased IL-1ß secretion in PBMCs from T1D patients and immortalized murine macrophages treated with advanced glycation end products and palmitic acid. The present study demonstrated that the resident PMs are in a proinflammatory state characterized by increased NLRP3/iNOS pathway-mediated NO production, up-regulated proinflammatory cytokine/chemokine receptor expression and altered glycolytic activity. Notably, ex vivo treatment with DHA reverted the diabetes-induced changes and attenuated the macrophage inflammatory state. It is plausible that DHA supplementation could be employed as adjuvant therapy for treating individuals with T1D.


Assuntos
Anti-Inflamatórios/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Adulto , Animais , Células Cultivadas , Citocinas/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/imunologia , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/enzimologia , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Gravidez , Transdução de Sinais , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA