Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1373498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39192975

RESUMO

Introduction: Visceral leishmaniasis (VL) is an important tropical and neglected disease and represents a serious global health problem. The initial interaction between the phagocytes and the parasite is crucial to determine the pathogen's capacity to initiate infection and it shapes the subsequent immune response that will develop. While type-1 T-cells induce IL-6, IL-1ß, TNF-α, and IL-12 production by monocytes/macrophages to fight the infection, type-2 T-cells are associated with a regulatory phenotype (IL-10 and TGF-ß) and successful infection establishment. Recently, our group demonstrated the role of an important Th1/Th17 T-cell population, the mucosal-associated invariant T (MAIT) cells, in VL. MAIT cells can respond to L. infantum by producing TNF-α and IFN-γ upon MR1-dependent activation. Objective and methods: Here, we describe the impact of the MR1-blockage on L. infantum internalization on the functional profile of circulating neutrophils and monocytes as well as the impact of the MR1-blockage on the soluble mediator signatures of in vitro whole blood cultures. Results: Overall, our data showed that VL patients presents higher percentage of activated neutrophils than asymptomatic and non-infected controls. In addition, MR1 blockade led to lower TNF-α and TGF-ß production by non-activated neutrophils from asymptomatic individuals. Moreover, TNF-α and IL-10 production by monocytes was higher in VL patients. In the analysis of soluble mediators produced in vitro, MR1-blockade induced a decrease of IFN-γ and an increase of IL-10, IL-27 and IL-33 in the cell cultures of AS group, a cytokine pattern associated with type 2 deleterious response. Discussion and conclusion: These data corroborate the hypothesis that MR1-restricted responses are associated to a protective role during Leishmania infection.


Assuntos
Citocinas , Leishmaniose Visceral , Monócitos , Leishmaniose Visceral/imunologia , Humanos , Citocinas/metabolismo , Adulto , Feminino , Masculino , Monócitos/imunologia , Monócitos/metabolismo , Leishmania infantum/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Adolescente
2.
Sci Immunol ; 9(91): eadi9517, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241401

RESUMO

Whereas CD4+ T cells conventionally mediate antitumor immunity by providing help to CD8+ T cells, recent clinical studies have implied an important role for cytotoxic CD4+ T cells in cancer immunity. Using an orthotopic melanoma model, we provide a detailed account of antitumoral CD4+ T cell responses and their regulation by major histocompatibility complex class II (MHC II) in the skin. Intravital imaging revealed prominent interactions of CD4+ T cells with tumor debris-laden MHC II+ host antigen-presenting cells that accumulated around tumor cell nests, although direct recognition of MHC II+ melanoma cells alone could also promote CD4+ T cell control. CD4+ T cells stably suppressed or eradicated tumors even in the absence of other lymphocytes by using tumor necrosis factor-α and Fas ligand (FasL) but not perforin-mediated cytotoxicity. Interferon-γ was critical for protection, acting both directly on melanoma cells and via induction of nitric oxide synthase in myeloid cells. Our results illustrate multifaceted and context-specific aspects of MHC II-dependent CD4+ T cell immunity against cutaneous melanoma, emphasizing modulation of this axis as a potential avenue for immunotherapies.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II , Antígenos HLA
3.
Nat Commun ; 12(1): 4355, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272362

RESUMO

Mucosal-associated Invariant T (MAIT) cells are recognized for their antibacterial functions. The protective capacity of MAIT cells has been demonstrated in murine models of local infection, including in the lungs. Here we show that during systemic infection of mice with Francisella tularensis live vaccine strain results in evident MAIT cell expansion in the liver, lungs, kidney and spleen and peripheral blood. The responding MAIT cells manifest a polarised Th1-like MAIT-1 phenotype, including transcription factor and cytokine profile, and confer a critical role in controlling bacterial load. Post resolution of the primary infection, the expanded MAIT cells form stable memory-like MAIT-1 cell populations, suggesting a basis for vaccination. Indeed, a systemic vaccination with synthetic antigen 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil in combination with CpG adjuvant similarly boosts MAIT cells, and results in enhanced protection against both systemic and local infections with different bacteria. Our study highlights the potential utility of targeting MAIT cells to combat a range of bacterial pathogens.


Assuntos
Citocinas/metabolismo , Francisella tularensis/imunologia , Imunidade Inata , Células T Invariantes Associadas à Mucosa/imunologia , Adjuvantes Imunológicos , Animais , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Fígado/imunologia , Pulmão/imunologia , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Fenótipo , RNA-Seq , Ribitol/análogos & derivados , Ribitol/imunologia , Análise de Célula Única , Baço/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Transcriptoma/genética , Uracila/análogos & derivados , Uracila/imunologia , Vacinas Atenuadas/imunologia
4.
Allergy ; 75(10): 2477-2490, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32181878

RESUMO

Conventional T cells recognise protein-derived antigens in the context of major histocompatibility complex (MHC) class Ia and class II molecules and provide anti-microbial and anti-tumour immunity. Conventional T cells have also been implicated in type IV (also termed delayed-type or T cell-mediated) hypersensitivity reactions in response to protein-derived allergen antigens. In addition to conventional T cells, subsets of unconventional T cells exist, which recognise non-protein antigens in the context of monomorphic MHC class I-like molecules. These include T cells that are restricted to the cluster of differentiation 1 (CD1) family members, known as CD1-restricted T cells, and mucosal-associated invariant T cells (MAIT cells) that are restricted to the MHC-related protein 1 (MR1). Compared with conventional T cells, much less is known about the immune functions of unconventional T cells and their role in hypersensitivities. Here, we review allergen antigen presentation by MHC-I-like molecules, their recognition by unconventional T cells, and the potential role of unconventional T cells in hypersensitivities. We also speculate on possible scenarios of allergen antigen presentation by MHC-I-like molecules to unconventional T cells, the hallmarks of such responses, and the expected frequencies of hypersensitivities within the human population.


Assuntos
Hipersensibilidade , Células T Invariantes Associadas à Mucosa , Alérgenos , Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Humanos , Antígenos de Histocompatibilidade Menor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA