Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Biol Int ; 45(5): 1060-1071, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33448518

RESUMO

Free living amoeba of the genus Acanthamoeba are opportunist protozoan involved in corneal, systemic, and encephalic infections in humans. Most of the mechanisms underlying intraspecies variations and pathogenicity are still unknown. Recently, the release of extracellular vesicles (EVs) by Acanthamoeba was reported. However, comparative characterization of EVs from distinct strains is not available. The aim of this study was to evaluate EVs produced by Acanthamoeba from different genotypes, comparing their proteases profile and immunomodulatory properties. EVs from four environmental or clinical strains (genotypes T1, T2, T4, and T11) were obtained by ultracentrifugation, quantitated by nanoparticle tracking analysis and analyzed by scanning and transmission electron microscopy. Proteases profile was determined by zymography and functional properties of EVs (measure of nitrite and cytokine production) were determined after peritoneal macrophage stimulation. Despite their genotype, all strains released EVs and no differences in size and/or concentration were detected. EVs exhibited a predominant activity of serine proteases (pH 7.4 and 3.5), with higher intensity in T4 and T1 strains. EVs from the environmental, nonpathogenic T11 strain exhibited a more proinflammatory profile, inducing higher levels of Nitrite, tumor necrosis factor alpha and interleukin-6 via TLR4/TLR2 than those strains with pathogenic traits (T4, T1, and T2). Preincubation with EVs treated with protease inhibitors or heating drastically decreased nitrite concentration production in macrophages. Those data suggest that immunomodulatory effects of EVs may reflect their pathogenic potential depending on the Acanthamoeba strains and are dependent on protease integrity.


Assuntos
Acanthamoeba/genética , Acanthamoeba/metabolismo , Vesículas Extracelulares/imunologia , Acanthamoeba/classificação , Animais , Vesículas Extracelulares/fisiologia , Feminino , Genótipo , Fatores Imunológicos/imunologia , Fatores Imunológicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-32850481

RESUMO

Leishmania infection causes considerable human morbidity and may develop into a deadly visceral form in endemic regions. The parasite infects macrophages where they can replicate intracellularly. Furthermore, they modulate host immune responses by using virulence factors (lipophosphoglycan, glycoprotein-63, and others) that promote survival inside the cells. Extracellular vesicles (EVs) released by parasites are important for cell-cell communication in the proinflammatory milieu modulating the establishment of infection. However, information on the ability of EVs from different Leishmania species to modulate inflammatory responses is scarce, especially from those species causing different clinical manifestations (visceral vs. cutaneous). The purpose of this study was to compare macrophage activation using EVs from three Leishmania species from New World including L. infantum, L. braziliensis, and L. amazonensis. EVs were released from promastigote forms, purified by ultracentrifugation and quantitated by Nanoparticle Tracking Analysis (NTA) prior to murine macrophage exposure. NTA analysis did not show any differences in the EV sizes among the strains. EVs from L. braziliensis and L. infantum failed to induce a pro-inflammatory response. EVs from both L. infantum WT and LPG-deficient mutant (LPG-KO) did not show any differences in their interaction with macrophages, suggesting that LPG solely was not determinant for activation. On the other hand, EVs from L. amazonensis were immunomodulatory inducing NO, TNF-α, IL-6, and IL-10 via TLR4 and TLR2. To determine whether such activation was related to NF-κB p65 translocation, THP-1 macrophage cells were exposed to EVs. In the same way, only EVs from L. amazonensis exhibited a highly percentage of cells positive for NF-κB. Our results suggest an important role of EVs in determining the pattern of immune response depending on the parasite species. For L. infantum, LPG was not determinant for the activation.


Assuntos
Vesículas Extracelulares , Leishmania , Parasitos , Animais , Humanos , Imunidade , Camundongos , NF-kappa B , Receptores Toll-Like
3.
Sci Rep ; 8(1): 14046, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232403

RESUMO

Reticulocyte-derived exosomes (Rex), extracellular vesicles of endocytic origin, were initially discovered as a cargo-disposal mechanism of obsolete proteins in the maturation of reticulocytes into erythrocytes. In this work, we present the first mass spectrometry-based proteomics of human Rex (HuRex). HuRex were isolated from cultures of human reticulocyte-enriched cord blood using different culture conditions and exosome isolation methods. The newly described proteome consists of 367 proteins, most of them related to exosomes as revealed by gene ontology over-representation analysis and include multiple transporters as well as proteins involved in exosome biogenesis and erythrocytic disorders. Immunoelectron microscopy validated the presence of the transferrin receptor. Moreover, functional assays demonstrated active capture of HuRex by mature dendritic cells. As only seven proteins have been previously associated with HuRex, this resource will facilitate studies on the role of human reticulocyte-derived exosomes in normal and pathological conditions affecting erythropoiesis.


Assuntos
Exossomos/metabolismo , Sangue Fetal/citologia , Proteômica/métodos , Reticulócitos/citologia , Bancos de Sangue , Técnicas de Cultura de Células , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Sangue Fetal/metabolismo , Humanos , Espectrometria de Massas , Microscopia Imunoeletrônica , Nanotecnologia , Receptores da Transferrina/metabolismo , Reticulócitos/metabolismo
5.
Front Cell Dev Biol ; 4: 131, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27900319

RESUMO

Reticulocyte-derived exosomes (rex) are 30-100 nm membrane vesicles of endocytic origin released during the maturation of reticulocytes to erythrocytes upon fusion of multivesicular bodies with the plasma membrane. Combination of CpG-ODN with rex obtained from BALB/c mice infected with the reticulocyte-prone non-lethal P. yoelii 17X malaria strain (rexPy), had been shown to induce survival and long lasting protection. Here, we show that splenectomized mice are not protected upon rexPy+CpG inmunizations and that protection is restored upon passive transfer of splenocytes obtained from animals immunized with rexPy+CpG. Notably, rexPy immunization of mice induced changes in PD1- memory T cells with effector phenotype. Proteomics analysis of rexPy confirmed their reticulocyte origin and demonstrated the presence of parasite antigens. Our studies thus prove, for what we believe is the first time, that rex from reticulocyte-prone malarial infections are associated with splenic long-lasting memory responses. To try extrapolating these data to human infections, in vitro experiments with spleen cells of human transplantation donors were performed. Plasma-derived exosomes from vivax malaria patients (exPv) were actively uptaken by human splenocytes and stimulated spleen cells leading to changes in T cell subsets.

7.
J Extracell Vesicles ; 4: 27378, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26154623

RESUMO

Plasma-derived vesicles hold a promising potential for use in biomedical applications. Two major challenges, however, hinder their implementation into translational tools: (a) the incomplete characterization of the protein composition of plasma-derived vesicles, in the size range of exosomes, as mass spectrometric analysis of plasma sub-components is recognizably troublesome and (b) the limited reach of vesicle-based studies in settings where the infrastructural demand of ultracentrifugation, the most widely used isolation/purification methodology, is not available. In this study, we have addressed both challenges by carrying-out mass spectrometry (MS) analyses of plasma-derived vesicles, in the size range of exosomes, from healthy donors obtained by 2 alternative methodologies: size-exclusion chromatography (SEC) on sepharose columns and Exo-Spin™. No exosome markers, as opposed to the most abundant plasma proteins, were detected by Exo-Spin™. In contrast, exosomal markers were present in the early fractions of SEC where the most abundant plasma proteins have been largely excluded. Noticeably, after a cross-comparative analysis of all published studies using MS to characterize plasma-derived exosomes from healthy individuals, we also observed a paucity of "classical exosome markers." Independent of the isolation method, however, we consistently identified 2 proteins, CD5 antigen-like (CD5L) and galectin-3-binding protein (LGALS3BP), whose presence was validated by a bead-exosome FACS assay. Altogether, our results support the use of SEC as a stand-alone methodology to obtain preparations of extracellular vesicles, in the size range of exosomes, from plasma and suggest the use of CD5L and LGALS3BP as more suitable markers of plasma-derived vesicles in MS.

8.
J Extracell Vesicles ; 3: 25040, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25536932

RESUMO

Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite-parasite inter-communication as well as in parasite-host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens.

9.
Infect Genet Evol ; 19: 258-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23871773

RESUMO

Genomic, transcriptomic, proteomic, and metabolomic projects exemplify the "omics" era, and have significantly expanded available data for biomedical research. Recently, next generation sequencing technologies have even more greatly expanded DNA and RNA information. The present challenge is mining this information to obtain meaningful data such as that identifying novel drug targets and vaccine candidates. Several bioinformatics tools and new technologies have been used to high-throughput identification of potential candidates. We illustrate the utilization of new strategies in the study of two major parasitic diseases: schistosomiasis and malaria.


Assuntos
Biologia Computacional , Mineração de Dados , Malária , Esquistossomose , Animais , Antimaláricos , Humanos , Vacinas Antimaláricas , Camundongos , Esquistossomicidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA