Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Respir Med ; 91(6): 464-485, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37987297

RESUMO

The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2019) etiological agent, which has a high contagiousness and is to blame for the outbreak of acute viral pneumonia, is the cause of the respiratory disease COVID-19. The use of natural products grew as an alternative treatment for various diseases due to the abundance of organic molecules with pharmacological properties. Many pharmaceutical studies have focused on investigating compounds with therapeutic potential. Therefore, this study aimed to identify potential antiviral compounds from a popular medicinal plant called Moringa oleifera Lam. against the spike, Mpro, ACE2, and RBD targets of SARS-CoV-2. For this, we use molecular docking to identify the molecules with the greatest affinity for the targets through the orientation of the ligand with the receptor in complex. For the best results, ADME-TOX predictions were performed to evaluate the pharmacokinetic properties of the compounds using the online tool pkCSM. The results demonstrate that among the 61 molecules of M. oleifera, 22 molecules showed promising inhibition results, where the compound ellagic acid showed significant molecular affinity (-9.3 kcal.mol-1) in interaction with the spike protein. These results highlight the relevance of investigating natural compounds from M. oleifera as potential antivirals against SARS-CoV-2; however, additional studies are needed to confirm the antiviral activity of the compounds.


Assuntos
COVID-19 , Moringa oleifera , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
J Ethnopharmacol ; 292: 115191, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35292374

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The use of mushrooms in medicine is quite old and the first report about the use of genus Agaricus in treatment of ulcers occurred in Byzantine period. This mushroom is widely consumed as food, tea, food supplements, as well as nutraceutical and cosmeceutical applications, being cultivated and appreciated in several countries such as Brazil, Korea, Japan and China. AIM OF THE STUDY: This study aimed to characterize the chemical profile and the potential gastroprotective effect of hydroalcoholic extract from Agaricus blazei Murill (HEAb). MATERIALS AND METHODS: The extract was chemically characterized by elemental analysis, UPLC-QTOF-MSE, Nuclear Magnetic Resonance (NMR) and high-performance liquid chromatography (HPLC) techniques to elucidate the metabolites present in the extract. The quantification of phenolic compounds and the in vitro antioxidant activities were performed and the gastroprotective effect of this extract was evaluated against ethanol-induced gastric ulcer model. HEAb was administered by gavage at 5, 25 and 50 mg kg-1 and N-acetylcysteine at 300 mg kg-1 (positive control). Furthermore, the pathways of nitric oxide (NO), Cyclic Guanylate Monophosphate (cGMP), prostaglandins (PGs) and the involvement of ATP-sensitive K+ Channels were modulated. RESULTS: Mannitol, malic acid, pyroglutamic acid, L-agaritine and L-valine were putatively identified by UPLC-QTOF-MSE in HEAb. In addition, it was possible to identify mannitol by the intense signals in the NMR spectra, being still quantified as the main compound in the extract by HPLC. The contents of total phenols and flavonoids corroborated with the good antioxidant activity of HEAb. This study observed that HEAb at 25 and 50 mg kg-1 had gastroprotection effect demonstrated by the reduction of histopathological parameters and the reduction of mastocytosis in the stomach of mice. CONCLUSIONS: In this study was possible to conclude that HEAb has gastroprotective effect related to the involvement of NO and PG pathways in the ethanol-induced gastric ulcer model in mice.


Assuntos
Agaricus , Antiulcerosos , Úlcera Gástrica , Agaricus/metabolismo , Animais , Antiulcerosos/química , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Etanol/química , Mucosa Gástrica , Manitol/metabolismo , Manitol/farmacologia , Manitol/uso terapêutico , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle
3.
Molecules ; 25(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560278

RESUMO

Intestinal mucositis, characterized by inflammatory and/or ulcerative processes in the gastrointestinal tract, occurs due to cellular and tissue damage following treatment with 5-fluorouracil (5-FU). Rutin (RUT), a natural flavonoid extracted from Dimorphandra gardneriana, exhibits antioxidant, anti-inflammatory, cytoprotective, and gastroprotective properties. However, the effect of RUT on inflammatory processes in the intestine, especially on mucositis promoted by antineoplastic agents, has not yet been reported. In this study, we investigated the role of RUT on 5-FU-induced experimental intestinal mucositis. Swiss mice were randomly divided into seven groups: Saline, 5-FU, RUT-50, RUT-100, RUT-200, Celecoxib (CLX), and CLX + RUT-200 groups. The mice were weighed daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis); malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH) concentrations; mast and goblet cell counts; and cyclooxygenase-2 (COX-2) activity, as well as to perform immunohistochemical analyses. RUT treatment (200 mg/kg) prevented 5-FU-induced histopathological changes and reduced oxidative stress by decreasing MDA concentrations and increasing GSH concentrations. RUT attenuated the inflammatory response by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. These results suggest that the COX-2 pathway is one of the underlying protective mechanisms of RUT against 5-FU-induced intestinal mucositis.


Assuntos
Fluoruracila/efeitos adversos , Enteropatias , Mucosite , Estresse Oxidativo/efeitos dos fármacos , Rutina/farmacologia , Animais , Fluoruracila/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Enteropatias/induzido quimicamente , Enteropatias/tratamento farmacológico , Enteropatias/metabolismo , Enteropatias/patologia , Masculino , Camundongos , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/metabolismo , Mucosite/patologia
4.
Pharmaceuticals (Basel) ; 13(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936203

RESUMO

Intestinal mucositis is a common complication associated with 5-fluorouracil (5-FU), a chemotherapeutic agent used for cancer treatment. Troxerutin (TRX), a semi-synthetic flavonoid extracted from Dimorphandra gardneriana, has been reported as a potent antioxidant and anti-inflammatory agent. In the present study, we aimed to evaluate the effect of TRX on 5-FU-induced intestinal mucositis. Swiss mice were randomly divided into seven groups: Saline, 5-FU, TRX-50, TRX-100, TRX-150, Celecoxib (CLX), and CLX + TRX-100. The weight of mice was measured daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis), levels of malondialdehyde (MDA), myeloperoxidase (MPO), glutathione (GSH), mast and goblet cell counts, immunohistochemical analysis, and cyclooxygenase-2 (COX-2) activity. Compared to the saline treatment, the 5-FU treatment induced intense weight loss and reduction in villus height. TRX treatment (100 mg/kg) prevented the 5-FU-induced histopathological changes and decreased oxidative stress by decreasing the MDA levels and increasing GSH concentration. TRX attenuated inflammatory process by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. TRX also reversed the depletion of goblet cells. Our findings suggest that TRX at a concentration of 100 mg/kg had chemopreventive effects on 5-FU-induced intestinal mucositis via COX-2 pathway.

5.
Pharmaceuticals (Basel) ; 12(2)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987265

RESUMO

Intestinal mucositis is a common complication associated with 5-fluorouracil (5-FU), a chemotherapeutic agent used for cancer treatment. Cashew gum (CG) has been reported as a potent anti-inflammatory agent. In the present study, we aimed to evaluate the effect of CG extracted from the exudate of Anacardium occidentale L. on experimental intestinal mucositis induced by 5-FU. Swiss mice were randomly divided into seven groups: Saline, 5-FU, CG 30, CG 60, CG 90, Celecoxib (CLX), and CLX + CG 90 groups. The weight of mice was measured daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis), levels of malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH), and immunohistochemical analysis of interleukin 1 beta (IL-1ß) and cyclooxygenase-2 (COX-2). 5-FU induced intense weight loss and reduction in villus height compared to the saline group. CG 90 prevented 5-FU-induced histopathological changes and decreased oxidative stress through decrease of MDA levels and increase of GSH concentration. CG attenuated inflammatory process by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. Our findings suggest that CG at a concentration of 90 mg/kg reverses the effects of 5-FU-induced intestinal mucositis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA