Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(47): 53241-53249, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36394995

RESUMO

Shortages of personal protective equipment (PPE) at the start of the COVID-19 pandemic caused medical workers to reuse medical supplies such as N95 masks. While ultraviolet germicidal irradiation (UVGI) is commonly used for sterilization, UVGI can also damage the elastomeric components of N95 masks, preventing effective fit and thus weakening filtration efficacy. Although PPE shortage is no longer an acute issue, the development of sterilizable and reusable UV-resistant elastomers remains of high interest from a long-term sustainability and health perspective. Here, graphene nanosheets, produced by scalable and sustainable exfoliation of graphite in ethanol using the polymer ethyl cellulose (EC), are utilized as UV-resistant additives in polyurethane (PU) elastomer composites. By increasing the graphene/EC loading up to 1 wt %, substantial UV protection is imparted by the graphene nanosheets, which strongly absorb UV light and hence suppress photoinduced degradation of the PU matrix. Additionally, graphene/EC provides mechanical reinforcement, such as increasing Young's modulus, elongation at break, and toughness, with negligible changes following UV exposure. These graphene/EC-PU composites remain mechanically robust over at least 150 sterilization cycles, enabling safe reuse following UVGI. Beyond N95 masks, these UVGI-compatible graphene/EC-PU composites have potential utility in other PPE applications to address the broader issue of single-use waste.


Assuntos
COVID-19 , Grafite , Humanos , Elastômeros , Poliuretanos , Raios Ultravioleta , Pandemias
2.
Faraday Discuss ; 227: 92-104, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33295349

RESUMO

Due to its excellent chemical/thermal stability and mechanical robustness, hexagonal boron nitride (hBN) is a promising solid matrix material for ionogels. While bulk hBN ionogels have been employed in macroscopic applications such as lithium-ion batteries, hBN ionogel inks that are compatible with high-resolution printing have not yet been realized. Here, we describe aerosol jet-printable ionogels using exfoliated hBN nanoplatelets as the solid matrix. The hBN nanoplatelets are produced from bulk hBN powders by liquid-phase exfoliation, allowing printable hBN ionogel inks to be formulated following the addition of an imidazolium ionic liquid and ethyl lactate. The resulting inks are reliably printed with variable patterns and controllable thicknesses by aerosol jet printing, resulting in hBN ionogels that possess high room-temperature ionic conductivities and storage moduli of >3 mS cm-1 and >1 MPa, respectively. By integrating the hBN ionogel with printed semiconductors and electrical contacts, fully-printed thin-film transistors with operating voltages below 1 V are demonstrated on polyimide films. These devices exhibit desirable electrical performance and robust mechanical tolerance against repeated bending cycles, thus confirming the suitability of hBN ionogels for printed and flexible electronics.

3.
ACS Appl Mater Interfaces ; 12(7): 8107-8114, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31973532

RESUMO

By preventing electrical contact between anode and cathode electrodes while promoting ionic transport, separators are critical components in the safe operation of rechargeable battery technologies. However, traditional polymer-based separators have limited thermal stability, which has contributed to catastrophic thermal runaway failure modes that have conspicuously plagued lithium-ion batteries. Here, we describe the development of phase-inversion composite separators based on carbon-coated hexagonal boron nitride (hBN) nanosheets and poly(vinylidene fluoride) (PVDF) polymers that possess high porosity, electrolyte wettability, and thermal stability. The carbon-coated hBN nanosheets are obtained through a scalable liquid-phase shear exfoliation method using ethyl cellulose as a polymer stabilizer and source of the carbon coating following thermal pyrolysis. When incorporated within the PVDF matrix, the carbon-coated hBN nanosheets promote favorable interfacial interactions during the phase-inversion process, resulting in porous, flexible, free-standing composite separators. The unique chemical composition of these carbon-coated hBN separators implies high wettability for a wide range of liquid electrolytes. This combination of high porosity and electrolyte wettability enables enhanced ionic conductivity and lithium-ion battery electrochemical performance that exceeds incumbent polyolefin separators over a wide range of operating conditions. The hBN nanosheets also impart high thermal stability, providing safe lithium-ion battery operation up to 120 °C.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34131488

RESUMO

Solution-processed graphene inks that use ethyl cellulose as a polymer stabilizer are blade-coated into large-area thin films. Following blade-coating, the graphene thin films are cured to pyrolyze the cellulosic polymer, leaving behind an sp2-rich amorphous carbon residue that serves as a binder in addition to facilitating charge transport between graphene flakes. Systematic charge transport measurements, including temperature-dependent Hall effect and non-contact microwave resonant cavity characterization, reveal that the resulting electrically percolating graphene thin films possess high mobility (≈ 160 cm2 V-1 s-1), low energy gap, and thermally activated charge transport, which develop weak localization behavior at cryogenic temperatures.

5.
ACS Nano ; 13(8): 9664-9672, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31318524

RESUMO

Solid-state electrolytes based on ionic liquids and a gelling matrix are promising for rechargeable lithium-ion batteries due to their safety under diverse operating conditions, favorable electrochemical and thermal properties, and wide processing compatibility. However, gel electrolytes also suffer from low mechanical moduli, which imply poor structural integrity and thus an enhanced probability of electrical shorting, particularly under conditions that are favorable for lithium dendrite growth. Here, we realize high-modulus, ion-conductive gel electrolytes based on imidazolium ionic liquids and exfoliated hexagonal boron nitride (hBN) nanoplatelets. Compared to conventional bulk hBN microparticles, exfoliated hBN nanoplatelets improve the mechanical properties of gel electrolytes by 2 orders of magnitude (shear storage modulus ∼5 MPa), while retaining high ionic conductivity at room temperature (>1 mS cm-1). Moreover, exfoliated hBN nanoplatelets are compatible with high-voltage cathodes (>5 V vs Li/Li+) and impart exceptional thermal stability that allows high-rate operation of solid-state rechargeable lithium-ion batteries at temperatures up to 175 °C.

6.
Anal Chim Acta ; 1031: 195, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30119739

RESUMO

The purpose of this Corrigendum is to cite and comment on an important reference that brings some support to the ideas developed in this paper and should be chronologically inserted into the history of advances in this area.

7.
Anal Chim Acta ; 1006: 1-9, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30016259

RESUMO

In this paper, we introduce a novel approach for the detection of electroactive analytes by using oxidant species accumulated in pseudocapacitors surface. We demonstrated that pseudocapacitors can be quickly discharged when in contact with electroactive species. Thus, the variation of potential can be monitored during the discharging process and correlated with the analyte concentration. Based on this, two electroanalytical methods were proposed: continuous discharging detection and pulsed discharging detection. As a proof of concept, these methods were employed for glucose, fructose and sucrose detection using an ion chromatograph containing an electrochemical detector. Copper|cupric oxide in alkaline medium was used as the pseudocapacitive system. The obtained results proved to be very promising and the analytical curves showed good linearity in both methods. In addition, this novel approach for the detection of saccharides based on potential variation as a result of the discharging of the pseudocapacitor in contact with the analyte is very attractive because it does not require current reading. Therefore, our approach can be applied to other pseudocapacitive systems, opening new possibilities for several electroanalytical applications.

8.
J Biomed Nanotechnol ; 12(7): 1323-47, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-29336531

RESUMO

In recent years, carbon dots (CDs) have gained increasing attention owing to their unique properties and enormous potential for several biomedical and technological applications. CDs are biocompatible, have a small size with a relatively large surface area, are photostable, and have customizable photoluminescence properties. This review is divided into the following discussions of CDs: general definitions; an overview of recent reviews; methods of green and classical synthesis; applications in bioimaging, involving supercapacitors, nanocarriers and nanomedicine; toxicological evaluations (including cytotoxic, genotoxic and anti-cancer properties of CDs); their conjugation with enzymes, biosensors, and cell labeling. Finally the remaining drawbacks and challenges of CD applications are highlighted. In this context, this article aims to provide critical insight and inspire further developments in the synthesis and application of CDs.


Assuntos
Biotecnologia , Carbono , Nanotecnologia , Animais , Técnicas Biossensoriais , Química Verde , Humanos , Imagem Molecular
9.
Curr Top Med Chem ; 15(4): 309-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25579346

RESUMO

During the last ten years, graphene oxide has been explored in many applications due to its remarkable electroconductivity, thermal properties and mobility of charge carriers, among other properties. As discussed in this review, the literature suggests that a total characterization of graphene oxide must be conducted because oxidation debris (synthesis impurities) present in the graphene oxides could act as a graphene oxide surfactant, stabilizing aqueous dispersions. It is also important to note that the structure models of graphene oxide need to be revisited because of significant implications for its chemical composition and its direct covalent functionalization. Another aspect that is discussed is the need to consider graphene oxide surface chemistry. The hemolysis assay is recommended as a reliable test for the preliminary assessment of graphene oxide toxicity, biocompatibility and cell membrane interaction. More recently, graphene oxide has been extensively explored for drug delivery applications. An important increase in research efforts in this emerging field is clearly represented by the hundreds of related publications per year, including some reviews. Many studies have been performed to explore the graphene oxide properties that enable it to deliver more than one activity simultaneously and to combine multidrug systems with photothermal therapy, indicating that graphene oxide is an attractive tool to overcome hurdles in cancer therapies. Some strategic aspects of the application of these materials in cancer treatment are also discussed. In vitro studies have indicated that graphene oxide can also promote stem cell adhesion, growth and differentiation, and this review discusses the recent and pertinent findings regarding graphene oxide as a valuable nanomaterial for stem cell research in medicine. The protein corona is a key concept in nanomedicine and nanotoxicology because it provides a biomolecular identity for nanomaterials in a biological environment. Understanding protein corona-nanomaterial interactions and their influence on cellular responses is a challenging task at the nanobiointerface. New aspects and developments in this area are discussed.


Assuntos
Portadores de Fármacos/química , Grafite/química , Óxidos/química , Adesão Celular/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Grafite/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Óxidos/farmacologia , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA