Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Pediatr ; 22(1): 181, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382780

RESUMO

BACKGROUND: X-linked agammaglobulinemia (XLA) is an Inborn Errors of Immunity (IEI) characterized by pan-hypogammaglobulinemia and low numbers of B lymphocytes due to mutations in BTK gene. Usually, XLA patients are not susceptible to respiratory tract infections by viruses and do not present interstitial lung disease (ILD) such as bronchiolitis obliterans (BO) as a consequence of acute or chronic bacterial infections of the respiratory tract. Although many pathogenic variants have already been described in XLA, the heterogeneous clinical presentations in affected patients suggest a more complex genetic landscape underlying this disorder. CASE PRESENTATION: We report two pediatric cases from male siblings with X-Linked Agammaglobulinemia and bronchiolitis obliterans, a phenotype not often observed in XLA phenotype. The whole-exome sequencing (WES) analysis showed a rare hemizygous missense variant NM_000061.2(BTK):c.1751G>A(p.Gly584Glu) in BTK gene of both patients. We also identified a gain-of-function mutation in TGFß1 (rs1800471) previously associated with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. TGFß1 plays a key role in the regulation of immune processes and inflammatory response associated with pulmonary impairment. CONCLUSIONS: Our report illustrates a possible role for WES in patients with known inborn errors of immunity, but uncommon clinical presentations, providing a personalized understanding of genetic basis, with possible implications in the identification of potential treatments, and prognosis for patients and their families.


Assuntos
Agamaglobulinemia , Bronquiolite Obliterante , Doenças Genéticas Ligadas ao Cromossomo X , Tirosina Quinase da Agamaglobulinemia/genética , Agamaglobulinemia/complicações , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/genética , Criança , Análise Mutacional de DNA , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Masculino , Mutação , Irmãos
2.
Pediatr Res ; 87(4): 785-795, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31645053

RESUMO

BACKGROUND: Single-nucleotide polymorphisms (SNPs) that impact on the differential expression of interleukin 28B (IL28B) are implicated in the progression of viral-induced diseases. In this prospective longitudinal cohort study, we evaluated the association between IL28B SNPs rs12979860 and rs8099917 and the clinical outcome of bronchiolitis in pediatric patients. METHODS: A total of 682 infants suffering from bronchiolitis, categorized based on the final clinical outcome as mild or severe, were genotyped for IL28B SNPs rs12979860 and rs8099917. RESULTS: When infants were categorized exclusively based on the final clinical outcome, no association was established between IL28B SNPs and the severity of bronchiolitis. However, when stratified by sex, the homozygotes for the minor alleles of rs12979860 (T) and rs8099917 (G) were associated with a mild disease in girls but not in boys. CONCLUSION: SNPs rs12979860 and rs8099917 correlate with the severity of bronchiolitis and display a sex bias, where GG rs8099917 and TT rs12979860 genotypes are associated with a mild disease in girls but not in boys. These findings suggest that innate immunity and female sex links with the outcome of the diseases induced by respiratory viruses, such as RSV.


Assuntos
Bronquiolite/genética , Interferons/genética , Polimorfismo de Nucleotídeo Único , Fatores Etários , Bronquiolite/diagnóstico , Bronquiolite/imunologia , Bronquiolite/virologia , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lactente , Estudos Longitudinais , Fenótipo , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Fatores Sexuais
3.
Front Genet ; 10: 1144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798637

RESUMO

RASopathies are a group of rare genetic diseases caused by germline mutations in genes involved in the RAS-mitogen-activated protein kinase (RAS-MAPK) pathway. Whole-exome sequencing (WES) is a powerful approach for identifying new variants in coding and noncoding DNA sequences, including miRNAs. miRNAs are fine-tuning negative regulators of gene expression. The presence of variants in miRNAs could lead to malfunctions of regulation, resulting in diseases. Here, we identified 41 variants in mature miRNAs through WES analysis in five patients with previous clinical diagnosis of RASopathies syndromes. The pathways, biological processes, and diseases that were over-represented among the target genes of the mature miRNAs harboring variants included the RAS, MAPK, RAP1, and PIK3-Akt signaling pathways, neuronal differentiation, neurogenesis and nervous system development, congenital cardiac defects (hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy), and the phenotypes and syndromes of RASopathies (Noonan syndrome, Legius syndrome, Costello syndrome, Cafe au lait spots multiple, subaortic stenosis, pulmonary valve stenosis, and LEOPARD syndrome). Furthermore, eight selected variants in nine mature miRNAs (hsa-miR-1304, hsa-miR-146a, hsa-miR-196a2, hsa-miR-499a/hsa-miR-499b, hsa-miR-449b, hsa-miR-548l, hsa-miR-575, and hsa-miR-593) may have caused alterations in the secondary structures of miRNA precursor. Selected miRNAs containing variants such as hsa-miR-146a-3p, hsa-miR-196a-3p, hsa-miR-548l, hsa-miR-449b-5p, hsa-miR-575, and hsa-miR499a-3p could regulate classical genes associated with Rasopathies and RAS-MAPK pathways, contributing to modify the expression pattern of miRNAs in patients. RT-qPCR expression analysis revealed four differentially expressed miRNAs that were downregulated: miRNA-146a-3p in P1, P2, P3, P4, and P5, miR-1304-3p in P2, P3, P4, and P5, miR-196a2-3p in P3, and miR-499b-5p in P1. miR-499a-3p was upregulated in P1, P3, and P5. These results indicate that miRNAs show different expression patterns when these variants are present in patients. Therefore, this study characterized the role of miRNAs harboring variants related to RASopathies for the first time and indicated the possible implications of these variants for phenotypes of RASopathies such as congenital cardiac defects and cardio-cerebrovascular diseases. The expression and existence of miRNA variants may be used in the study of biomarkers of the RASopathies.

4.
BMC Genomics ; 17(Suppl 8): 743, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27801290

RESUMO

BACKGROUND: Bacterial non-coding RNAs act by base-pairing as regulatory elements in crucial biological processes. We performed the identification of trans-encoded small RNAs (sRNA) from the genomes of Mycoplama hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis, which are Mycoplasma species that have been identified in the porcine respiratory system. RESULTS: A total of 47, 15 and 11 putative sRNAs were predicted in M. hyopneumoniae, M. flocculare and M. hyorhinis, respectively. A comparative genomic analysis revealed the presence of species or lineage specific sRNA candidates. Furthermore, the expression profile of some M. hyopneumoniae sRNAs was determined by a reverse transcription amplification approach, in three different culture conditions. All tested sRNAs were transcribed in at least one condition. A detailed investigation revealed a differential expression profile for two M. hyopneumoniae sRNAs in response to oxidative and heat shock stress conditions, suggesting that their expression is influenced by environmental signals. Moreover, we analyzed sRNA-mRNA hybrids and accessed putative target genes for the novel sRNA candidates. The majority of the sRNAs showed interaction with multiple target genes, some of which could be linked to pathogenesis and cell homeostasis activity. CONCLUSION: This study contributes to our knowledge of Mycoplasma sRNAs and their response to environmental changes. Furthermore, the mRNA target prediction provides a perspective for the characterization and comprehension of the function of the sRNA regulatory mechanisms.


Assuntos
Regulação Bacteriana da Expressão Gênica , Mycoplasma/genética , Interferência de RNA , RNA não Traduzido/genética , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , RNA não Traduzido/química , Suínos
5.
BMC Genomics ; 17(Suppl 8): 736, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27801295

RESUMO

BACKGROUND: The described species from the Metarhizium genus are cosmopolitan fungi that infect arthropod hosts. Interestingly, while some species infect a wide range of hosts (host-generalists), other species infect only a few arthropods (host-specialists). This singular evolutionary trait permits unique comparisons to determine how pathogens and virulence determinants emerge. Among the several virulence determinants that have been described, secondary metabolites (SMs) are suggested to play essential roles during fungal infection. Despite progress in the study of pathogen-host relationships, the majority of genes related to SM production in Metarhizium spp. are uncharacterized, and little is known about their genomic organization, expression and regulation. To better understand how infection conditions may affect SM production in Metarhizium anisopliae, we have performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in M. anisopliae, analyzed RNA-seq data from fungi grown on cattle-tick cuticles, evaluated the differential expression of BGCs, and assessed conservation among the Metarhizium genus. Furthermore, our analysis extended to the construction of a phylogeny for the following three BGCs: a tropolone/citrinin-related compound (MaPKS1), a pseurotin-related compound (MaNRPS-PKS2), and a putative helvolic acid (MaTERP1). RESULTS: Among 73 BGCs identified in M. anisopliae, 20 % were up-regulated during initial tick cuticle infection and presumably possess virulence-related roles. These up-regulated BGCs include known clusters, such as destruxin, NG39x and ferricrocin, together with putative helvolic acid and, pseurotin and tropolone/citrinin-related compound clusters as well as uncharacterized clusters. Furthermore, several previously characterized and putative BGCs were silent or down-regulated in initial infection conditions, indicating minor participation over the course of infection. Interestingly, several up-regulated BGCs were not conserved in host-specialist species from the Metarhizium genus, indicating differences in the metabolic strategies employed by generalist and specialist species to overcome and kill their host. These differences in metabolic potential may have been partially shaped by horizontal gene transfer (HGT) events, as our phylogenetic analysis provided evidence that the putative helvolic acid cluster in Metarhizium spp. originated from an HGT event. CONCLUSIONS: Several unknown BGCs are described, and aspects of their organization, regulation and origin are discussed, providing further support for the impact of SM on the Metarhizium genus lifestyle and infection process.


Assuntos
Genoma Fúngico , Genômica , Metarhizium/genética , Metarhizium/metabolismo , Metabolismo Secundário/genética , Transcriptoma , Animais , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Genômica/métodos , Interações Hospedeiro-Patógeno , Metarhizium/classificação , Filogenia , Característica Quantitativa Herdável , Carrapatos/microbiologia
6.
Plant Sci ; 246: 62-69, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26993236

RESUMO

Horizontal gene transfer (HGT) is known to be a major force in genome evolution. The acquisition of genes from viruses by eukaryotic genomes is a well-studied example of HGT, including rare cases of non-retroviral RNA virus integration. The present study describes the integration of cucumber mosaic virus RNA-1 into soybean genome. After an initial metatranscriptomic analysis of small RNAs derived from soybean, the de novo assembly resulted a 3029-nt contig homologous to RNA-1. The integration of this sequence in the soybean genome was confirmed by DNA deep sequencing. The locus where the integration occurred harbors the full RNA-1 sequence followed by the partial sequence of an endogenous mRNA and another sequence of RNA-1 as an inverted repeat and allowing the formation of a hairpin structure. This region recombined into a retrotransposon located inside an exon of a soybean gene. The nucleotide similarity of the integrated sequence compared to other Cucumber mosaic virus sequences indicates that the integration event occurred recently. We described a rare event of non-retroviral RNA virus integration in soybean that leads to the production of a double-stranded RNA in a similar fashion to virus resistance RNAi plants.


Assuntos
Genoma de Planta , Glycine max/genética , Glycine max/virologia , Vírus de Plantas/fisiologia , RNA de Plantas/genética , Integração Viral/fisiologia , Sequência de Bases , Cucumovirus/fisiologia , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo
7.
BMC Genomics ; 16: 499, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26141959

RESUMO

BACKGROUND: Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. CL Brener, the reference strain of the T. cruzi genome project, is a hybrid with a genome assembled into 41 putative chromosomes. Gene copy number variation (CNV) is well documented as an important mechanism to enhance gene expression and variability in T. cruzi. Chromosomal CNV (CCNV) is another level of gene CNV in which whole blocks of genes are expanded simultaneously. Although the T. cruzi karyotype is not well defined, several studies have demonstrated a significant variation in the size and content of chromosomes between different T. cruzi strains. Despite these studies, the extent of diversity in CCNV among T. cruzi strains based on a read depth coverage analysis has not been determined. RESULTS: We identify the CCNV in T. cruzi strains from the TcI, TcII and TcIII DTUs, by analyzing the depth coverage of short reads from these strains using the 41 CL Brener chromosomes as reference. This study led to the identification of a broader extent of CCNV in T. cruzi than was previously speculated. The TcI DTU strains have very few aneuploidies, while the strains from TcII and TcIII DTUs present a high degree of chromosomal expansions. Chromosome 31, which is the only chromosome that is supernumerary in all six T. cruzi samples evaluated in this study, is enriched with genes related to glycosylation pathways, highlighting the importance of glycosylation to parasite survival. CONCLUSIONS: Increased gene copy number due to chromosome amplification may contribute to alterations in gene expression, which represents a strategy that may be crucial for parasites that mainly depend on post-transcriptional mechanisms to control gene expression.


Assuntos
Variações do Número de Cópias de DNA/genética , Genoma de Protozoário/genética , Trypanosoma cruzi/genética , DNA de Protozoário/genética , Expressão Gênica/genética , Variação Genética/genética , Genômica/métodos , Glicosilação
8.
BMC Genomics ; 15: 822, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25263348

RESUMO

BACKGROUND: Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins. RESULTS: We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity. CONCLUSIONS: The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Metarhizium/genética , Animais , Hibridização Genômica Comparativa , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Metarhizium/classificação , Filogenia , Rhipicephalus/metabolismo , Rhipicephalus/microbiologia , Análise de Sequência de RNA
9.
Genet Mol Biol ; 35(1 (suppl)): 292-303, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22802714

RESUMO

A large number of small RNAs unrelated to the soybean genome were identified after deep sequencing of soybean small RNA libraries. A metatranscriptomic analysis was carried out to identify the origin of these sequences. Comparative analyses of small interference RNAs (siRNAs) present in samples collected in open areas corresponding to soybean field plantations and samples from soybean cultivated in greenhouses under a controlled environment were made. Different pathogenic, symbiotic and free-living organisms were identified from samples of both growth systems. They included viruses, bacteria and different groups of fungi. This approach can be useful not only to identify potentially unknown pathogens and pests, but also to understand the relations that soybean plants establish with microorganisms that may affect, directly or indirectly, plant health and crop production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA