Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1333249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628362

RESUMO

Biostimulants (Bio-effectors, BEs) comprise plant growth-promoting microorganisms and active natural substances that promote plant nutrient-acquisition, stress resilience, growth, crop quality and yield. Unfortunately, the effectiveness of BEs, particularly under field conditions, appears highly variable and poorly quantified. Using random model meta-analyses tools, we summarize the effects of 107 BE treatments on the performance of major crops, mainly conducted within the EU-funded project BIOFECTOR with a focus on phosphorus (P) nutrition, over five years. Our analyses comprised 94 controlled pot and 47 field experiments under different geoclimatic conditions, with variable stress levels across European countries and Israel. The results show an average growth/yield increase by 9.3% (n=945), with substantial differences between crops (tomato > maize > wheat) and growth conditions (controlled nursery + field (Seed germination and nursery under controlled conditions and young plants transplanted to the field) > controlled > field). Average crop growth responses were independent of BE type, P fertilizer type, soil pH and plant-available soil P (water-P, Olsen-P or Calcium acetate lactate-P). BE effectiveness profited from manure and other organic fertilizers, increasing soil pH and presence of abiotic stresses (cold, drought/heat or salinity). Systematic meta-studies based on published literature commonly face the inherent problem of publication bias where the most suspected form is the selective publication of statistically significant results. In this meta-analysis, however, the results obtained from all experiments within the project are included. Therefore, it is free of publication bias. In contrast to reviews of published literature, our unique study design is based on a common standardized protocol which applies to all experiments conducted within the project to reduce sources of variability. Based on data of crop growth, yield and P acquisition, we conclude that application of BEs can save fertilizer resources in the future, but the efficiency of BE application depends on cropping systems and environments.

2.
J Environ Manage ; 278(Pt 2): 111446, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33212354

RESUMO

The rapid increase in global production of and demand for palm oil has resulted in large-scale expansion of oil palm monoculture in the world's tropical regions, particularly in Indonesia. This expansion has led to the conversion of carbon-rich land-use types to oil palm plantations with a range of negative environmental impacts, including loss of carbon from aboveground biomass and soil. Sequestration of soil organic carbon (SOC) in existing oil palm plantations is an important strategy to limit carbon losses. The aim of this study was to investigate SOC stocks of oil palm plantations under different management systems. Soil samples were collected from three different management systems (best management practices (BMP), current management practices typical of large plantations (CMP) and smallholder management practices (SHMP)) in north Sumatra, Indonesia. Plantations were divided into four management zones that were sampled separately with four replicate profiles in the weeded circle, frond stack, harvesting path and interrow zones. All the soil samples were collected from five (0-5, 5-15, 15-30, 30-50 and 50-70 cm) soil depths. Soil samples were analysed for concentration of SOC, soil texture, soil bulk density and pH. Calculations of SOC stocks in the soils were undertaken according to the fixed-depth and equivalent soil mass approaches. Results showed that SOC stocks of plantations under BMP (68 t ha-1) were 31% and 18% higher than under CMP (57 t ha-1) and SHMP (46 t ha-1) respectively. In the BMP system, soils under the interrow zone that received enriched mulch and frond stack positions stored significantly more SOC than the harvesting path of the BMP system (77, 73 and 57 t ha-1 respectively). BMP also had a 33% higher fresh fruit bunch yield compared to the SHMP system. This study shows that residue incorporation or retention as a part of BMP could be an effective strategy for increasing SOC stocks of oil palm plantations and confirms that these management practices could improve yields from SHMP systems.


Assuntos
Carbono , Solo , Agricultura , Carbono/análise , Florestas , Indonésia
3.
Sci Total Environ ; 739: 140215, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758960

RESUMO

Rice production systems are the largest anthropogenic wetlands on earth and feed more than half of the world's population. However, they are also a major source of global anthropogenic greenhouse gas (GHG) emissions. Several agronomic strategies have been proposed to improve water-use efficiency and reduce GHG emissions. The aim of this study was to evaluate the impact of water-saving irrigation (alternate wetting and drying (AWD) vs. soil water potential (SWP)), contrasting land establishment (puddling vs. reduced tillage) and fertiliser application methods (broadcast vs. liquid fertilisation) on water-use efficiency, GHG emissions and rice yield. The experiment was laid out in a randomised complete block design with eight treatments (all combinations of the three factors) and four replicates. AWD combined with broadcasting fertilisation was superior to SWP in terms of maintaining yield. However, seasonal nitrous oxide (N2O) emissions were significantly reduced by 64% and 66% in the Broadcast-SWP and Liquid fertiliser-SWP treatments, respectively, compared to corresponding treatments in AWD. The SWP also significantly reduced seasonal methane (CH4) emissions by 34 and 30% in the broadcast and liquid fertilisation treatments, respectively. Area-scaled GWPs were reduced by 48% and 54% in Broadcast-SWP and Liquid fertiliser-SWP treatments respectively compared to the corresponding treatments in AWD. Compared to AWD, the broadcast and liquid fertilisation in SWP irrigation treatments reduced yield-scaled GWPs by 46% and 37%, respectively. In terms of suitability, based on yield-scaled GWPs, the treatments can be ordered as follows: Broadcast-SWP < Broadcast-AWD = Liquid fertiliser-SWP < Liquid fertiliser-AWD. Growing-season water use was 15% lower in the SWP treatments compared with the water-saving AWD. Reduced tillage reduced additional water use during land preparation. The conclusions of this study are that improved water management and timely coordination of N fertiliser with crop demand can reduce water use, N loss via N2O emissions, and CH4 emissions.

4.
Waste Manag ; 100: 306-317, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31574459

RESUMO

Thermal drying is an increasingly common post-treatment for digestate-solids, but prone to N losses via ammonia (NH3) volatilization. Acidification with strong acids prior to drying may retain ammonium (NH4+) in the solids. Natural zeolites can provide adsorption sites for exchangeable cations as ammonium and porosity for free ammonia, which has the potential to contribute to higher N retention in the dried solids. The present study investigated whether the zeolite addition increases NH4+-N retention during thermal drying of two digestate solids (manure based, MDS; sewage sludge based, SDS), and whether any synergistic effects of combining acidification with sulfuric acid and the addition of zeolite exist. Operating conditions included four pH levels (non-acidified control, adjusted to 8.0, 7.5, 6.5 with concentrated sulfuric acid), four zeolite addition rates (0%, 1%, 5% and 10%), fixed drying temperature (130 °C) and fixed air ventilation rate (headspace exchange rate of 286 times hour-1). Zeolite addition significantly increased NH4+-N retention from 18.0% of initial NH4+-N in the non-acidified control up to a maximum of 57.4% for MDS, and from 76.6% to 94.5% for SDS. No positive synergistic effect between acidification and zeolite addition was observed, with acidification being the dominant. Nevertheless, zeolite has the potential to be a safe and easy-to-handle alternative to concentrated sulfuric acid.


Assuntos
Esterco , Zeolitas , Amônia , Nitrogênio , Esgotos
5.
J Environ Manage ; 225: 168-176, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30119009

RESUMO

Water drainage is an important mitigation option for reducing CH4 (methane) emissions from residue-amended paddy soils. Several studies have indicated a long-term reduction in CH4 emissions, even after re-flooding, suggesting that the mechanism goes beyond creating temporary oxidized conditions in the soil. In this pot trial, the effects of different drainage patterns on straw-derived CH4 and CO2 (carbon dioxide) emissions were compared to identify the balance between straw-carbon CH4 and CO2 emissions influenced by soil aeration over different periods, including effects of drainage on emissions during re-flooding. The water treatments included were: continuous flooding [C] as the control and five drainage patterns (pre-planting drainage [P], early-season drainage [E], midseason drainage [M], pre-planting plus midseason drainage [PM], early-season-plus-midseason drainage [EM]). An equal amount of 13C-enriched rice straw was applied to all treatments to identify straw-derived 13C-gas emissions from soil carbon derived emissions. The highest fluxes of CH4 and δ13C-CH4 were recorded from the control treatment in the first week after straw application. The CH4 flux and δ13C-CH4 were reduced the most (0.1-0.8 µg CH4 g-1 soil day-1 and -13 to -34‰) in the pre-planting and pre-planting plus midseason drainage treatments at day one after transplanting. Total and straw-derived CH4 emissions were reduced by 69% and 78% in pre-planting drainage and 77% and 87% in pre-planting plus midseason drainage respectively, compared to control. The early-season, midseason, pre-planting plus midseason and early-season-plus-midseason drainage treatments resulted in higher total and straw-derived CO2 emissions compared to the control and pre-planting drainage treatments. The pre-planting and pre-planting plus midseason drainage treatments lowered the global warming potential by 47-53%, and early-season and early-season-plus-midseason drainage treatments reduced it by 24-31% compared to control. By using labelled crop residues, this experiment demonstrates a direct link between early drainage and reduced CH4 emissions from incorporated crop residues, eventually leading to a reduction in total global warming potential. It is suggested that accelerated decomposition of the residues during early season drainage prolonged the reduction in CH4 emissions. Therefore, it is important to introduce the early drainage as an effective measure to mitigate CH4 emissions from crop residues.


Assuntos
Aquecimento Global , Metano/análise , Solo/química , Agricultura , Carbono , Dióxido de Carbono , Óxido Nitroso , Oryza , Estações do Ano
6.
Sci Total Environ ; 626: 328-339, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29348066

RESUMO

Efforts have been made in recent years to improve knowledge about soil greenhouse gas (GHG) fluxes from sub-Saharan Africa. However, data on soil GHG emissions from smallholder coffee-dairy systems have not hitherto been measured experimentally. This study aimed to quantify soil GHG emissions at different spatial and temporal scales in smallholder coffee-dairy farms in Murang'a County, Central Kenya. GHG measurements were carried out for one year, comprising two cropping seasons, using vented static chambers and gas chromatography. Sixty rectangular frames were installed on two farms comprising the three main cropping systems found in the area: 1) coffee (Coffea arabica L.); 2) Napier grass (Pennisetum purpureum); and 3) maize intercropped with beans (Zea mays and Phaseolus vulgaris). Within these fields, chambers were allocated on fertilised and unfertilised locations to capture spatial variability. Cumulative annual fluxes in coffee plots ranged from 1 to 1.9kgN2O-Nha-1, 6.5 to 7.6MgCO2-Cha-1 and -3.4 to -2.2kgCH4-Cha-1, with 66% to 94% of annual GHG fluxes occurring during rainy seasons. Across the farm plots, coffee received most of the N inputs and had 56% to 89% higher emissions of N2O than Napier grass, maize and beans. Within farm plots, two to six times higher emissions were found in fertilised hotspots - around the perimeter of coffee trees or within planted maize rows - than in unfertilised locations between trees, rows and planting holes. Background and induced soil N2O emissions from fertiliser and manure applications in the three cropping systems were lower than hypothesized from previous studies and empirical models. This study supplements methods and underlying data for the quantification of GHG emissions at multiple spatial and temporal scales in tropical, smallholder farming systems. Advances towards overcoming the dearth of data will facilitate the understanding of synergies and tradeoffs of climate-smart approaches for low emissions development.

7.
Sci Total Environ ; 612: 1329-1339, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28898939

RESUMO

Global rice production systems face two opposing challenges: the need to increase production to accommodate the world's growing population while simultaneously reducing greenhouse gas (GHG) emissions. Adaptations to drainage regimes are one of the most promising options for methane mitigation in rice production. Whereas several studies have focused on mid-season drainage (MD) to mitigate GHG emissions, early-season drainage (ED) varying in timing and duration has not been extensively studied. However, such ED periods could potentially be very effective since initial available C levels (and thereby the potential for methanogenesis) can be very high in paddy systems with rice straw incorporation. This study tested the effectiveness of seven drainage regimes varying in their timing and duration (combinations of ED and MD) to mitigate CH4 and N2O emissions in a 101-day growth chamber experiment. Emissions were considerably reduced by early-season drainage compared to both conventional continuous flooding (CF) and the MD drainage regime. The results suggest that ED+MD drainage may have the potential to reduce CH4 emissions and yield-scaled GWP by 85-90% compared to CF and by 75-77% compared to MD only. A combination of (short or long) ED drainage and one MD drainage episode was found to be the most effective in mitigating CH4 emissions without negatively affecting yield. In particular, compared with CF, the long early-season drainage treatments LE+SM and LE+LM significantly (p<0.01) decreased yield-scaled GWP by 85% and 87% respectively. This was associated with carbon being stabilised early in the season, thereby reducing available C for methanogenesis. Overall N2O emissions were small and not significantly affected by ED. It is concluded that ED+MD drainage might be an effective low-tech option for small-scale farmers to reduce GHG emissions and save water while maintaining yield.

8.
Waste Manag ; 62: 43-51, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28228360

RESUMO

Dissolved organic carbon (DOC) has recently been proposed as an indicator of compost stability. We assessed the earthworms' effect on DOC content and composition during composting, and linked compost stability to greenhouse gas emissions and feeding ratio. Earthworms reduced total DOC content, indicating larger stability of vermicompost than of thermophilic compost. The concentrations of humic acid and fulvic acid were reduced by earthworms, whereas there was no significant effect on hydrophobic neutrals and hydrophilics. The humic acid fraction was depleted more quickly than the other compounds, indicating humic acid degradation during composting. The optimum feeding ratio decreased DOC content compared to the high feeding ratio. The lowest N2O emissions were also observed at the optimum feeding ratio. Our study confirmed the use of DOC content and composition as an indicator of compost stability and suggested that feeding ratio should be considered when assessing the earthworms' effect on stabilisation and greenhouse gas emissions.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Oligoquetos/fisiologia , Eliminação de Resíduos/métodos , Poluição do Ar/estatística & dados numéricos , Animais , Benzopiranos , Biodegradação Ambiental , Substâncias Húmicas , Esterco , Solo
9.
Chemosphere ; 166: 352-362, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27710881

RESUMO

Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N2O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability.


Assuntos
Nitrogênio/análise , Eliminação de Resíduos/métodos , Solo/química , Madeira/química , Biodegradação Ambiental , Carbono/química , Dióxido de Carbono/química , Etiópia , Fertilizantes , Gases/química , Aquecimento Global , Esterco , Metano/química , Modelos Estatísticos , Nitrogênio/química , Óxido Nitroso/química , Compostos Fitoquímicos/química , Sementes/química , Temperatura
10.
Sci Rep ; 6: 26279, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27197778

RESUMO

Demand for tools to rapidly assess greenhouse gas impacts from policy and technological change in the agricultural sector has catalyzed the development of 'GHG calculators'- simple accounting approaches that use a mix of emission factors and empirical models to calculate GHG emissions with minimal input data. GHG calculators, however, rely on models calibrated from measurements conducted overwhelmingly under temperate, developed country conditions. Here we show that GHG calculators may poorly estimate emissions in tropical developing countries by comparing calculator predictions against measurements from Africa, Asia, and Latin America. Estimates based on GHG calculators were greater than measurements in 70% of the cases, exceeding twice the measured flux nearly half the time. For 41% of the comparisons, calculators incorrectly predicted whether emissions would increase or decrease with a change in management. These results raise concerns about applying GHG calculators to tropical farming systems and emphasize the need to broaden the scope of the underlying data.

11.
Waste Manag ; 44: 82-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239937

RESUMO

The use of agricultural waste for soil amendment is limited in developing countries. Competition between fuel and feed is the major cause for the insufficient application of agricultural waste on cropland. The aims of this study were therefore (i) to investigate variation in agricultural waste allocation between groups of farmers with different livelihood strategies and link this allocation with the nutrient balances of their production systems, (ii) to identify farm characteristics that influence utilisation of agricultural waste for soil amendment, and (iii) to assess demand for urban waste compost. A total of 220 farmers were selected randomly and interviewed using standardised semi-structured questionnaires. Four groups of farmers, namely (i) field crop farmers, (ii) vegetable producers, (iii) ornamental-plant growers, and (iv) farmers practising mixed farming, were identified using categorical principal component and two-step cluster analyses. Field crop farmers produced the largest quantity of agricultural waste, but they allocated 80% of manure to fuel and 85% of crop residues to feed. Only <10% of manure and crop residues were applied on soils. Farmers also sold manure and crop residues, and this generated 5-10% of their annual income. Vegetable and ornamental-plant growers allocated over 40% of manure and crop residues to soil amendment. Hence, nutrient balances were less negative in vegetable production systems. Education, farm size, land tenure and access to extension services were the variables that impeded allocation of agricultural waste to soil amendment. Replacement of fuel and feed through sustainable means is a viable option for soil fertility management. Urban waste compost should also be used as alternative option for soil amendment. Our results showed variation in compost demand between farmers. Education, landownership, experience with compost and access to extension services explained variation in compost demand. We also demonstrated that labour availability should be used to estimate compost demand beside cash.


Assuntos
Agricultura/métodos , Fertilizantes/análise , Eliminação de Resíduos/métodos , Solo/química , Cidades , Etiópia , Fazendeiros/psicologia
12.
Environ Technol ; 36(23): 2924-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25182474

RESUMO

This study investigated the effects of different mixing ratios of crop residues and biochar with liquid digestate from anaerobically treated pig manure on CH4, CO2, and N2O emissions over 84 days in a system of passive aeration composting, resembling typical Vietnamese solid manure storage conditions. Two treatments with solid manure were included for comparison. The results showed that C losses through CH4 and CO2emissions accounted for 0.06-0.28% and 1.9-26.7%, respectively, of initial total C. CH4 losses accounted for just 0.4-4.0% of total C losses. Total N losses accounted for 27.1-40% of initial total N in which N2O emissions corresponded to 0.01-0.57% of initial total N, and hence accounted for only 0.1-1.8% of total N losses. It is assumed that the remainder was either the result of denitrification losses to N2or ammonia volatilization. The composting of biochar (B) or crop residue with digestate (D) showed significantly lower CH4 and N2O emissions compared with composting manure (M) (p < .05). The composting of digestate with biochar showed significantly lower CO2and CH4emissions and significantly higher N2O emissions compared to the composting of digestate with rice straw (RS) (p < .05). The combined composting of digestate with biochar and rice straw (D + B + RS5:0.3:1) showed significantly reduced N2O emissions compared with composting digestate with biochar with alone (p < .05). Composting sugar cane bagasse (SC) with digestate (D + SC) significantly reduced CH4and N2O emissions compared with the composting of rice straw with digestate (D + RS3.5:1 and D + RS5:1) (p < .05).


Assuntos
Agricultura/métodos , Poluentes Atmosféricos/análise , Solo , Animais , Carbono/análise , Dióxido de Carbono/análise , Celulose , Carvão Vegetal , Aquecimento Global , Esterco , Metano/análise , Nitrogênio/análise , Óxido Nitroso/análise , Oryza , Suínos , Vietnã , Resíduos
13.
Environ Technol ; 35(1-4): 220-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600860

RESUMO

Solid-liquid separation of animal slurry, with solid fractions used for composting, has gained interest recently. However, efficient composting of separated animal slurry solid fractions (SSFs) requires a better understanding of the process dynamics in terms of important physical parameters and their interacting physical relationships in the composting matrix. Here we monitored moisture content, bulk density, particle density and air-filled porosity (AFP) during composting of SSF collected from four commercially available solid-liquid separators. Composting was performed in laboratory-scale reactors for 30 days (d) under forced aeration and measurements were conducted on the solid samples at the beginning of composting and at 10-d intervals during composting. The results suggest that differences in initial physical properties of SSF influence the development of compost maximum temperatures (40-70 degreeC). Depending on SSF, total wet mass and volume losses (expressed as % of initial value) were up to 37% and 34%, respectively. After 30 d of composting, relative losses of total solids varied from 17.9% to 21.7% and of volatile solids (VS) from 21.3% to 27.5%, depending on SSF. VS losses in all composts showed different dynamics as described by the first-order kinetic equation. The estimated component particle density of 1441 kg m-3 for VS and 2625 kg m-3 for fixed solids can be used to improve estimates of AFP for SSF within the range tested. The linear relationship between wet bulk density and AFP reported by previous researchers held true for SSF.


Assuntos
Fracionamento Químico/métodos , Esterco/microbiologia , Modelos Químicos , Microbiologia do Solo , Solo/química , Extração em Fase Sólida/métodos , Ar , Animais , Simulação por Computador , Porosidade , Extração em Fase Sólida/instrumentação , Suínos
14.
Chemosphere ; 97: 16-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24210550

RESUMO

Aeration is an important factor influencing CO2, CH4, N2O and NH3 emissions from the composting process. Both CH4 and N2O are potent greenhouse gases (GHG) of high importance. Here, we examined the effects of high and low aeration rates together with addition of barley straw with and without bio-char on GHG and NH3 emissions from composting cattle slurry and hen manure in small-scale laboratory composters. Depending on treatment, cumulative C losses via CO2 and CH4 emissions accounted for 11.4-22.5% and 0.004-0.2% of initial total carbon, while N losses as N2O and NH3 emissions comprised 0.05-0.1% and 0.8-26.5% of initial total nitrogen, respectively. Decreasing the flow rate reduced cumulative NH3 losses non-significantly (by 88%) but significantly increased CH4 losses (by 51%) from composting of cattle slurry with barley straw. Among the hen manure treatments evaluated, bio-char addition to composting hen manure and barley straw at low flow rates proved most effective in reducing cumulative NH3 and CH4 losses. Addition of bio-char in combination with barley straw to hen manure at both high and low flow rates reduced total GHG emissions (as CO2-equivalents) by 27-32% compared with barley straw addition alone. Comparisons of flow rates showed that low flow could be an alternative strategy for reducing NH3 losses without any significant change in N2O emissions, pointing to the need for well-controlled composting conditions if gaseous emissions are to be minimised.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Dióxido de Carbono/análise , Carvão Vegetal/química , Esterco , Metano/análise , Dióxido de Nitrogênio/análise , Eliminação de Resíduos/métodos , Agricultura/métodos , Poluição do Ar/prevenção & controle , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA