Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 368(6493): 869-874, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32439789

RESUMO

The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.


Assuntos
Ciclo do Carbono , Mudança Climática , Florestas , Temperatura Alta , Árvores/metabolismo , Clima Tropical , Aclimatação , Biomassa , Carbono/metabolismo , Planeta Terra , Madeira
2.
Sci Rep ; 7: 39102, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094794

RESUMO

Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.


Assuntos
Biodiversidade , Carbono/análise , Florestas , Plantas/química , Plantas/classificação , África , América , Ásia , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA