Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biochem Parasitol ; : 111653, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39447762

RESUMO

The protozoan parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases (RACs), primarily located to the flagellar surface and involved in sensing of the extracellular environment. RACs exhibit a conserved topology characterized by a large N-terminal extracellular moiety harbouring two Venus Flytrap (VFT) bilobate structures separated from an intracellular catalytic domain by a single transmembrane helix. RAC activation, which typically occurs under mild acid stress, requires the dimerization of the intracellular catalytic domain. The occurrence of VFT domains in the RAC's extracellular moiety suggests their potential responsiveness to extracellular ligands in the absence of stress, although no such ligands have been identified so far. Herein we report the biophysical characterization of the membrane-proximal VFT2 domain of a bloodstream form-specific RAC called ESAG4, whose ectodomain 3D structure is completely unknown. The paper describes an AlphaFold2-based optimisation of the expression construct, enabling facile and high-yield recombinant production and purification of the target protein. Through an interdisciplinary approach combining various biophysical methods, we demonstrate that the optimised VFT2 domain obtained by recombination is properly folded and behaves as a monomer in solution. The latter suggests a ligand-binding capacity independent of dimerization, unlike typical mammalian VFT receptors, as guanylate cyclase. In silico VFT2 genomic analyses shows divergence among cyclase isoforms, hinting at ligand specificity. Taken together this improved procedure enabling facile and high-yield recombinant production and purification of the target protein could benefit researchers studying trypanosomal RAC VFT domains but also any trypanosome domain with poorly defined boundaries. Additionally, our findings support the stable monomeric VFT2 domain as a useful tool for future structural investigations and ligand screening.

2.
Commun Chem ; 7(1): 207, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284933

RESUMO

P53 Phase separation is crucial towards amyloid aggregation and p63 and p73 have enhanced expression in tumors. This study examines the phase behaviors of p53, p63, and p73. Here we show that unlike the DNA-binding domain of p53 (p53C), the p63C and p73C undergo phase separation, but do not form amyloids under physiological temperatures. Wild-type and mutant p53C form droplets at 4°C and aggregates at 37 °C with amyloid properties. Mutant p53C promotes amyloid-like states in p63C and p73C, recruiting them into membraneless organelles. Amyloid conversion is supported by thioflavin T and Congo red binding, increased light scattering, and circular dichroism. Full-length mutant p53 and p63C (or p73C) co-transfection shows reduced fluorescence recovery after photobleaching. Heparin inhibits the prion-like aggregation of p63C and p73C induced by p53C. These findings highlight the role of p53 in initiating amyloid aggregation in p63 and p73, opening avenues for targeting prion-like conversion in cancer therapy.

3.
Chem Rev ; 123(14): 9094-9138, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37379327

RESUMO

Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.


Assuntos
Neoplasias , Ácidos Nucleicos , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Agregados Proteicos , Neoplasias/metabolismo , Amiloide/química
4.
Biochemistry ; 62(1): 35-43, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36535020

RESUMO

The gene encoding the p53 tumor suppressor protein is the most frequently mutated oncogene in cancer patients; yet, generalized strategies for rescuing the function of different p53 mutants remain elusive. This work investigates factors that may contribute to the low inherent stability of the wild-type p53 core domain (p53C) and structurally compromised Y220C mutant. Pressure-induced unfolding of p53C was compared to p63C, the p53 family member with the highest stability, the engineered superstable p53C hexamutant (p53C HM), and lower stability p53C Y220C cancer-associated mutant. The following pressure unfolding values (P50% bar) were obtained: p53C 3346, p53C Y220C 2217, p53C HM 3943, and p63C 4326. Molecular dynamics (MD) simulations revealed that p53C Y220C was most prone to water infiltration, followed by p53C, whereas the interiors of p53C HM and p63C remained comparably dry. A strong correlation (r2 = 0.92) between P50% and extent of interior hydration was observed. The pathways of individual water molecule entry and exit were mapped and analyzed, revealing a common route preserved across the p53 family involving a previously reported pocket, along with a novel surface cleft, both of which appear to be targetable by small molecules. Potential determinants of propensity to water incursion were assessed, including backbone hydrogen bond protection and combined sequence and structure similarity. Collectively, our results indicate that p53C has an intrinsic susceptibility to water leakage, which is exacerbated in a structural class mutant, suggesting that there may be a common avenue for rescuing p53 function.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Água/metabolismo , Simulação de Dinâmica Molecular , Neoplasias/metabolismo , Fenômenos Biofísicos
5.
iScience ; 26(1): 105696, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36465857

RESUMO

The severe acute respiratory syndrome spread worldwide, causing a pandemic. SARS-CoV-2 mutations have arisen in the spike, a glycoprotein at the viral envelope and an antigenic candidate for vaccines against COVID-19. Here, we present comparative data of the glycosylated full-length ancestral and D614G spike together with three other transmissible strains classified by the World Health Organization as variants of concern: beta, gamma, and delta. By showing that D614G has less hydrophobic surface exposure and trimer persistence, we place D614G with features that support a model of temporary fitness advantage for virus spillover. Furthermore, during the SARS-CoV-2 adaptation, the spike accumulates alterations leading to less structural stability for some variants. The decreased trimer stability of the ancestral and gamma and the presence of D614G uncoupled conformations mean higher ACE-2 affinities compared to the beta and delta strains. Mapping the energetics and flexibility of variants is necessary to improve vaccine development.

6.
Essays Biochem ; 66(7): 1023-1033, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36350030

RESUMO

In 1972, the Weber statement, "The multiplicity of interactions and the variety of effects that follow from them show that multimer proteins are unlikely to be limited to a minimal number of allowed conformations," first addressed the dynamic nature of proteins. This idea serves as a foundation for understanding why several macromolecules, such as p53, exhibit the properties of a molecular chameleon. Functionally competent states comprise a myriad of p53 three-dimensional arrangements depending on the stimuli. For instance, the interaction of p53 with nuclear components could induce liquid-liquid phase separation (LLPS) and the formation of membraneless organelles. The functional or deleterious role of p53 in liquid droplets is still unclear. Functional aspects display p53 interconverting between droplets and tetramer with its functional abilities maintained. In contrast, the aberrant phase separation is likely to fuel the aggregation path, usually associated with the onset and progression of age-related neurodegenerative diseases and cancer. Here, we gathered the most relevant aspects that lead p53 to phase separation and the resulting structural effects, attempting to understand p53's functional and disease-relevant processes. Aberrant phase separation and aggregation of mutant p53 have become important therapeutic targets against cancer.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Humanos , Proteína Supressora de Tumor p53 , Doenças Neurodegenerativas/metabolismo , Neoplasias/metabolismo , Núcleo Celular/metabolismo
7.
J Phys Chem B ; 126(43): 8689-8698, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36281877

RESUMO

Protein excited states are fundamental in the understanding of biological function, despite the fact they are hardly observed using traditional biophysical methodologies. Pressure perturbation coupled with nuclear magnetic resonance (NMR) spectroscopy is a powerful physicochemical tool to glance at these low-populated high-energy states on a residue-by-residue basis and underpin mechanistic insights into protein functionalities. Here we performed pressure titrations using NMR spectroscopy and relaxation dispersion experiments to identify the low-lying energetic states of the c-Abl SH2 domain. By showing that the SH2 excited state contains a hydrated hydrophobic cavity, fast-exchange motions, and highly conserved residues facing the water-accessible hole, we discuss the implications of water-protein interactions in SH2 modules achieving high-affinity binding and promiscuous phospho-Tyr peptide recognition.


Assuntos
Água , Domínios de Homologia de src , Proteínas/química , Peptídeos , Ligação Proteica , Sítios de Ligação
8.
Front Mol Biosci ; 9: 944955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090037

RESUMO

The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.

9.
Curr Opin Struct Biol ; 73: 102346, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247749

RESUMO

Liquid-liquid phase separation (LLPS) and phase transitions (PT) of proteins, which include the formation of gel- and solid-like species, have been characterized as physical processes related to the pathology of conformational diseases. Nucleic acid (NA)-binding proteins related to neurodegenerative disorders and cancer were shown by us and others to experience PT modulated by different NAs. Herein, we discuss recent work on phase separation and phase transitions of two amyloidogenic proteins, i.e. the prion protein (PrP) and p53, which undergo conformational changes and aggregate upon NA interaction. The role of different NAs in these processes is discussed to shed light on the relevance of PSs and PTs for both the functional and pathological roles of these mammalian proteins.


Assuntos
Ácidos Nucleicos , Príons , Proteínas Amiloidogênicas , Animais , Mamíferos/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Príons/química , Príons/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo
10.
iScience ; 24(11): 103315, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34723156

RESUMO

We used the recombinant trimeric spike (S) glycoprotein in the prefusion conformation to immunize horses for the production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by ELISA were above 1:106, and the neutralizing antibody titer against authentic virus (WT) was 1:14,604 (average PRNT90). Plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding an F(ab')2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Challenge studies were carried out in hamsters and showed the in vivo ability of equine F(ab')2 to reduce viral load in the pulmonary tissues and significant clinical improvement determined by weight gain. The neutralization curve by F(ab')2 was similar against the WT and P.2 variants, but displaced to higher concentrations by 0.39 log units against the P.1 (Gamma) variant. These results support the possibility of using equine F(ab')2 preparation for the clinical treatment of COVID patients.

11.
Biotechnol Bioeng ; 118(9): 3581-3592, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34143442

RESUMO

Yellow fever (YF) is a life-threatening viral disease endemic in parts of Africa and Latin America. Although there is a very efficacious vaccine since the 1930s, YF still causes 29,000-60,000 annual deaths. During recent YF outbreaks there were issues of vaccine shortage of the current egg-derived vaccine; rare but fatal vaccine adverse effects occurred; and cases were imported to Asia, where the circulating mosquito vector could potentially start local transmission. Here we investigated the production of YF virus-like particles (VLPs) using stably transfected HEK293 cells. Process intensification was achieved by combining sequential FACS (fluorescence-activated cell sorting) rounds to enrich the stable cell pool in terms of high producers and the use of perfusion processes. At shaken-tube scale, FACS enrichment of cells allowed doubling VLP production, and pseudoperfusion cultivation (with daily medium exchange) further increased VLP production by 9.3-fold as compared to batch operation mode. At perfusion bioreactor scale, the use of an inclined settler as cell retention device showed operational advantages over an ATF system. A one-step steric exclusion chromatography purification allowed significant removal of impurities and is a promising technique for future integration of upstream and downstream operations. Characterization by different techniques confirmed the identity and 3D-structure of the purified VLPs.


Assuntos
Vacinas de Partículas Semelhantes a Vírus , Vacina contra Febre Amarela , Vírus da Febre Amarela/química , Células HEK293 , Humanos , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Vacina contra Febre Amarela/química , Vacina contra Febre Amarela/isolamento & purificação
12.
Chem Sci ; 12(21): 7308-7323, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-34163821

RESUMO

Cardiac TnC (cTnC) is highly conserved among mammals, and genetic variants can result in disease by perturbing Ca2+-regulation of myocardial contraction. Here, we report the molecular basis of a human mutation in cTnC's αD-helix (TNNC1-p.C84Y) that impacts conformational dynamics of the D/E central-linker and sampling of discrete states in the N-domain, favoring the "primed" state associated with Ca2+ binding. We demonstrate cTnC's αD-helix normally functions as a central hub that controls minimally frustrated interactions, maintaining evolutionarily conserved rigidity of the N-domain. αD-helix perturbation remotely alters conformational dynamics of the N-domain, compromising its structural rigidity. Transgenic mice carrying this cTnC mutation exhibit altered dynamics of sarcomere function and hypertrophic cardiomyopathy. Together, our data suggest that disruption of evolutionary conserved molecular frustration networks by a myofilament protein mutation may ultimately compromise contractile performance and trigger hypertrophic cardiomyopathy.

13.
Chem Sci ; 12(21): 7334-7349, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34163823

RESUMO

Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions. p53C phase separated in the presence of the crowding agent polyethylene glycol (PEG). Similarly, mutant p53C (M237I and R249S) underwent PS; however, the process evolved to a solid-like phase transition faster than that in the case of wild-type p53C. The data obtained by microscopy of live cells indicated that transfection of mutant full-length p53 into the cells tended to result in PS and phase transition (PT) in the nuclear compartments, which are likely the cause of the GoF effects. Fluorescence recovery after photobleaching (FRAP) experiments revealed liquid characteristics of the condensates in the nucleus. Mutant p53 tended to undergo gel- and solid-like phase transitions in the nucleus and in nuclear bodies demonstrated by slow and incomplete recovery of fluorescence after photobleaching. Polyanions, such as heparin and RNA, were able to modulate PS and PT in vitro. Heparin apparently stabilized the condensates in a gel-like state, and RNA apparently induced a solid-like state of the protein even in the absence of PEG. Conditions that destabilize p53C into a molten globule conformation also produced liquid droplets in the absence of crowding. The disordered transactivation domain (TAD) modulated both phase separation and amyloid aggregation. In summary, our data provide mechanistic insight into the formation of p53 condensates and conditions that may result in the formation of aggregated structures, such as mutant amyloid oligomers, in cancer. The pathway of mutant p53 from liquid droplets to gel-like and solid-like (amyloid) species may be a suitable target for anticancer therapy.

14.
Biophys Chem ; 268: 106506, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221697

RESUMO

Our understanding of amyloid structures and the mechanisms by which disease-associated peptides and proteins self-assemble into these fibrillar aggregates, has advanced considerably in recent years. It is also established that amyloid fibrils are generally polymorphic. The molecular structures of the aggregation intermediates and the causes of molecular and structural polymorphism are less understood, however. Such information is mandatory to explain the pathological diversity of amyloid diseases. What is also clear is that not only protein mutations, but also the physiological milieu, i.e. pH, cosolutes, crowding and surface interactions, have an impact on fibril formation. In this minireview, we focus on the effect of the less explored physical parameters temperature and pressure on the fibrillization propensity of proteins and how these variables can be used to reveal additional mechanistic information about intermediate states of fibril formation and molecular and structural polymorphism. Generally, amyloids are very stable and can resist harsh environmental conditions, such as extreme pH, high temperature and high pressure, and can hence serve as valuable functional amyloid. As an example, we discuss the effect of temperature and pressure on the catalytic activity of peptide amyloid fibrils that exhibit enzymatic activity.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Peptídeos/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Peptídeos/metabolismo , Pressão , Conformação Proteica , Temperatura
15.
Biomolecules ; 10(4)2020 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260447

RESUMO

Despite being referred to as the guardian of the genome, when impacted by mutations, p53 can lose its protective functions and become a renegade. The malignant transformation of p53 occurs on multiple levels, such as altered DNA binding properties, acquisition of novel cellular partners, or associating into different oligomeric states. The consequences of these transformations can be catastrophic. Ongoing studies have implicated different oligomeric p53 species as having a central role in cancer biology; however, the correlation between p53 oligomerization status and oncogenic activities in cancer progression remains an open conundrum. In this review, we summarize the roles of different p53 oligomeric states in cancer and discuss potential research directions for overcoming aberrant p53 function associated with them. We address how misfolding and prion-like amyloid aggregation of p53 seem to play a crucial role in cancer development. The misfolded and aggregated states of mutant p53 are prospective targets for the development of novel therapeutic strategies against tumoral diseases.


Assuntos
Neoplasias/metabolismo , Agregados Proteicos , Multimerização Proteica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Estrutura Quaternária de Proteína
16.
iScience ; 23(2): 100820, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31981923

RESUMO

Tumor-associated p53 mutations endow cells with malignant phenotypes, including chemoresistance. Amyloid-like oligomers of mutant p53 transform this tumor suppressor into an oncogene. However, the composition and distribution of mutant p53 oligomers are unknown and the mechanism involved in the conversion is sparse. Here, we report accumulation of a p53 mutant within amyloid-like p53 oligomers in glioblastoma-derived cells presenting a chemoresistant gain-of-function phenotype. Statistical analysis from fluorescence fluctuation spectroscopy, pressure-induced measurements, and thioflavin T kinetics demonstrates the distribution of oligomers larger than the active tetrameric form of p53 in the nuclei of living cells and the destabilization of native-drifted p53 species that become amyloid. Collectively, these results provide insights into the role of amyloid-like mutant p53 oligomers in the chemoresistance phenotype of malignant and invasive brain tumors and shed light on therapeutic options to avert cancer.

17.
Biochem J ; 477(1): 111-120, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31841126

RESUMO

Aggregation is the cause of numerous protein conformation diseases. A common facet of these maladies is the transition of a protein from its functional native state into higher order forms, such as oligomers and amyloid fibrils. p53 is an essential tumor suppressor that is prone to such conformational transitions, resulting in its compromised ability to avert cancer. This work explores the biophysical properties of early-, mid-, and late-stage p53 core domain (p53C) aggregates. Atomistic and coarse-grained molecular dynamics (MD) simulations suggest that early- and mid-stage p53C aggregates have a polymorphic topology of antiparallel and parallel ß-sheets that localize to the core amyloidogenic sequence. Both topologies involve similar extents of interstrand mainchain hydrogen bonding, while sidechain interactions could play a role in regulating strand orientation. The free energy difference between the antiparallel and parallel states was within statistical uncertainty. Negative stain electron microscopy of mature fibrils shows a wide distribution of fiber widths, indicating that polymorphism may extend to the quaternary structure level. Circular dichroism of the fibrils was indicative of ß-sheet rich structures in atypical conformations. The Raman spectrum of aggregated p53C was consistent with a mixture of arranged ß-sheets and heterogeneous structural elements, which is compatible with the MD findings of an ordered ß-sheet nucleus flanked by disordered structure. Structural polymorphism is a common property of amyloids; however, because certain polymorphs of the same protein can be more harmful than others, going forward it will be pertinent to establish correlations between p53C aggregate structure and pathology.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Proteína Supressora de Tumor p53/química , Amiloide/metabolismo , Fenômenos Biofísicos , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica em Folha beta , Domínios Proteicos , Proteína Supressora de Tumor p53/metabolismo
18.
J Biol Chem ; 294(52): 20054-20069, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31748410

RESUMO

Aberrant regulation of myocardial force production represents an early biomechanical defect associated with sarcomeric cardiomyopathies, but the molecular mechanisms remain poorly defined. Here, we evaluated the pathogenicity of a previously unreported sarcomeric gene variant identified in a pediatric patient with sporadic dilated cardiomyopathy, and we determined a molecular mechanism. Trio whole-exome sequencing revealed a de novo missense variant in TNNC1 that encodes a p.I4M substitution in the N-terminal helix of cardiac troponin C (cTnC). Reconstitution of this human cTnC variant into permeabilized porcine cardiac muscle preparations significantly decreases the magnitude and rate of isometric force generation at physiological Ca2+-activation levels. Computational modeling suggests that this inhibitory effect can be explained by a decrease in the rates of cross-bridge attachment and detachment. For the first time, we show that cardiac troponin T (cTnT), in part through its intrinsically disordered C terminus, directly binds to WT cTnC, and we find that this cardiomyopathic variant displays tighter binding to cTnT. Steady-state fluorescence and NMR spectroscopy studies suggest that this variant propagates perturbations in cTnC structural dynamics to distal regions of the molecule. We propose that the intrinsically disordered C terminus of cTnT directly interacts with the regulatory N-domain of cTnC to allosterically modulate Ca2+ activation of force, perhaps by controlling the troponin I switching mechanism of striated muscle contraction. Alterations in cTnC-cTnT binding may compromise contractile performance and trigger pathological remodeling of the myocardium.


Assuntos
Troponina C/metabolismo , Troponina T/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Feminino , Humanos , Masculino , Mutagênese Sítio-Dirigida , Contração Miocárdica , Miocárdio/metabolismo , Miofibrilas/fisiologia , Ressonância Magnética Nuclear Biomolecular , Linhagem , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Troponina C/química , Troponina T/química , Troponina T/genética
19.
Commun Biol ; 2: 374, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31633065

RESUMO

Amyloid formation is a process involving interconverting protein species and results in toxic oligomers and fibrils. Aggregated alpha-synuclein (αS) participates in neurodegenerative maladies, but a closer understanding of the early αS polymerization stages and polymorphism of heritable αS variants is sparse still. Here, we distinguished αS oligomer and protofibril interconversions in Thioflavin T polymerization reactions. The results support a hypothesis reconciling the nucleation-polymerization and nucleation-conversion-polymerization models to explain the dissimilar behaviors of wild-type and the A53T mutant. Cryo-electron microscopy with a direct detector shows the polymorphic nature of αS fibrils formed by heritable A30P, E46K, and A53T point mutations. By showing that A53T rapidly nucleates competent species, continuously elongates fibrils in the presence of increasing amounts of seeds, and overcomes wild-type surface requirements for growth, our findings place A53T with features that may explain the early onset of familial Parkinson's disease cases bearing this mutation.


Assuntos
Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Idade de Início , Amiloide/genética , Amiloide/metabolismo , Amiloide/ultraestrutura , Microscopia Crioeletrônica , Humanos , Cinética , Microscopia Eletrônica de Transmissão , Doença de Parkinson/epidemiologia , Mutação Puntual , alfa-Sinucleína/ultraestrutura
20.
Proc Natl Acad Sci U S A ; 116(45): 22591-22597, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636205

RESUMO

Studies on viruses infecting archaea living in the most extreme environments continue to show a remarkable diversity of structures, suggesting that the sampling continues to be very sparse. We have used electron cryo-microscopy to study at 3.7-Å resolution the structure of the Sulfolobus polyhedral virus 1 (SPV1), which was originally isolated from a hot, acidic spring in Beppu, Japan. The 2 capsid proteins with variant single jelly-roll folds form pentamers and hexamers which assemble into a T = 43 icosahedral shell. In contrast to tailed icosahedral double-stranded DNA (dsDNA) viruses infecting bacteria and archaea, and herpesviruses infecting animals and humans, where naked DNA is packed under very high pressure due to the repulsion between adjacent layers of DNA, the circular dsDNA in SPV1 is fully covered with a viral protein forming a nucleoprotein filament with attractive interactions between layers. Most strikingly, we have been able to show that the DNA is in an A-form, as it is in the filamentous viruses infecting hyperthermophilic acidophiles. Previous studies have suggested that DNA is in the B-form in bacteriophages, and our study is a direct visualization of the structure of DNA in an icosahedral virus.


Assuntos
Vírus de Archaea/fisiologia , Vírus de DNA/fisiologia , DNA Forma A/genética , DNA Viral/genética , Montagem de Vírus , Vírus de Archaea/genética , Vírus de Archaea/ultraestrutura , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , DNA Forma A/metabolismo , DNA Viral/metabolismo , Sulfolobus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA