Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14702, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038763

RESUMO

The soybean looper, Chrysodeixis includens, is a primary soybean pest that reduces crop productivity. This work examined control of C. includens populations with methanolic extract of Serjania erecta, a native Cerrado plant, while minimizing risks to pollinators, natural enemies and the environment. Serjania erecta specimens were collected, identified, and subjected to methanol extraction. Bioassays were performed using newly hatched and second-instar caterpillars and different extract concentrations on the diet surface to obtain IC50 values. Two replicates, containing 10 caterpillars, were established in triplicate. The IC50 values were 4.15 and 6.24 mg of extract mL-1 for first-instar and second-instar caterpillars, respectively. These growth inhibition results informed the extract concentrations assessed in subsequent development inhibition assays, in which the pupal weight was higher under the control than under the treatments. Extract treatments increased the duration of the larval, pupal and total development. The potential of different concentrations of S. erecta extract to inhibit the enzymes carboxylesterases was also evaluated. Carboxylesterases activity decreased by 41.96 and 43.43% at 7.8 and 15.6 µg mL-1 extract, respectively. At 31.3 µg mL-1 extract, enzymatic activity was not detected. Overall, S. erecta leaf methanolic extract showed inhibitory potential against carboxylesterases.


Assuntos
Mariposas , Sapindaceae , Animais , Hidrolases de Éster Carboxílico/farmacologia , Larva/fisiologia , Mariposas/fisiologia , Extratos Vegetais/farmacologia , Pupa , Glycine max
2.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355136

RESUMO

Tropical forests have played an important role as a carbon sink over time. However, the carbon dynamics of Brazilian non-Amazon tropical forests are still not well understood. Here, we used data from 32 tropical seasonal forest sites, monitored from 1987 to 2020 (mean site monitoring length, ~15 years) to investigate their long-term trends in carbon stocks and sinks. Our results highlight a long-term decline in the net carbon sink (0.13 Mg C ha-1 year-1) caused by decreasing carbon gains (2.6% by year) and increasing carbon losses (3.4% by year). The driest and warmest sites are experiencing the most severe carbon sink decline and have already moved from carbon sinks to carbon sources. Because of the importance of the terrestrial carbon sink for the global climate, policies are needed to mitigate the emission of greenhouse gases and to restore and protect tropical seasonal forests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA