Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 7: 100880, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322545

RESUMO

Understanding how plant carbon metabolism responds to environmental variables such as light is central to understanding ecosystem carbon cycling and the production of food, biofuels, and biomaterials. Here, we couple a portable leaf photosynthesis system to an autosampler for volatile organic compounds (VOCs) to enable field observations of net photosynthesis simultaneously with emissions of VOCs as a function of light. Following sample collection, VOCs are analyzed using automated thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). An example is presented from a banana plant in the central Amazon with a focus on the response of photosynthesis and the emissions of eight individual monoterpenes to light intensity. Our observations reveal that banana leaf emissions represent a 1.1 +/- 0.1% loss of photosynthesis by carbon. Monoterpene emissions from banana are dominated by trans-ß-ocimene, which accounts for up to 57% of total monoterpene emissions at high light. We conclude that the developed system is ideal for the identification and quantification of VOC emissions from leaves in parallel with CO2 and water fluxes.The system therefore permits the analysis of biological and environmental sensitivities of carbon metabolism in leaves in remote field locations, resulting in the emission of hydrocarbons to the atmosphere.•A field-portable system is developed for the identification and quantification of VOCs from leaves in parallel with leaf physiological measurements including photosynthesis and transpiration.•The system will enable the characterization of carbon and energy allocation to the biosynthesis and emission of VOCs linked with photosynthesis (e.g. isoprene and monoterpenes) and their biological and environmental sensitivities (e.g. light, temperature, CO2).•Allow the development of more accurate mechanistic global VOC emission models linked with photosynthesis, improving our ability to predict how forests will respond to climate change. It is our hope that the presented system will contribute with critical data towards these goals across Earth's diverse tropical forests.

2.
Carbon Balance Manag ; 13(1): 25, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30535635

RESUMO

BACKGROUND: Biomass models are useful for several purposes, especially for quantifying carbon stocks and dynamics in forests. Selecting appropriate equations from a fitted model is a process which can involves several criteria, some widely used and others used to a lesser extent. This study analyzes six selection criteria for models fitted to six sets of individual biomass collected from woody indigenous species of the Tropical Atlantic Rain Forest in Brazil. Six models were examined and the respective fitted equations evaluated by the residual sum of squares, adjusted coefficient of determination, absolute and relative estimates of the standard error of estimate, and Akaike and Schwartz (Bayesian) information criteria. The aim of this study was to analyze the numeric behavior of these model selection criteria and discuss the ease of interpretation of them. The importance of residual analysis in model selection is stressed. RESULTS: The adjusted coefficient of determination ([Formula: see text]) and the standard error of estimate in percentage (Syx%) are relative model selection criteria and are not affected by sample size and scale of the response variable. The sum of squared residuals (SSR), the absolute standard error of estimate (Syx), the Akaike information criterion and the Schwartz information criterion, in turn, depend on these quantities. The best fit model was always the same within a given data set regardless the model selection criteria considered (except for SSR in two cases), indicating they tend to converge to a common result. However, such criteria are not always closely related across different data sets. General model selection criteria are indicative of the average goodness of fit, but do not capture bias and outlier effects. Graphical residual analysis is a useful tool to this detection and must always be used in model selection. CONCLUSIONS: It is concluded that the criteria for model selection tend to lead to a common result, regardless their mathematical formulation and statistical significance. Relative measures of goodness of fitting are easier to interpret than the absolute ones. Careful graphical residual analysis must always be used to confirm the performance of the models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA