RESUMO
Carotenoids constitute compounds of significant biological interest due to their multiple biological activities, such as antimicrobial, anticancer, antiadipogenic, antidiabetic, and antioxidant properties. Metabolic syndrome (MetS) comprehends a series of metabolic abnormalities (e.g., hypertension, obesity, and atherogenic dyslipidemia) that can affect children, adolescents, and the elderly. The treatment of MetS involves numerous medications, which, despite their efficacy, pose challenges due to prolonged use, high costs, and various side effects. Carotenoids and their derivatives have been proposed as alternative treatments to MetS because they reduce serum triglyceride concentrations, promote insulin response, inhibit adipogenesis, and downregulate angiotensin-converting enzyme activity. However, carotenoids are notably sensitive to pH, light exposure, and temperature. This review addresses the activity of carotenoids such as lycopene, lutein, fucoxanthin, astaxanthin, crocin, and ß-carotene towards MetS. It includes a discussion of sources, extraction methods, and characterization techniques for analyzing carotenoids. Encapsulation approaches are critically reviewed as alternatives to prevent degradation and improve the biological performance of carotenoids. A brief overview of the physiopathology and epidemiology of the diseases, including MetS, is also provided.
RESUMO
The use of P(III) and P(V) organophosphorus derivatizing agents prepared from C(2) symmetrical (1R,2R)- and (1S,2S)-trans-N,N'-bis-[(S)-alpha-phenylethyl]-cyclohexane-1,2-diamines 1 and 2, as well as (1R,2R)- and (1S,2S)-trans-N,N'-bis-[(S)-alpha-phenylethyl]-4-cyclohexene-1,2-diamines 3 and 4 for the determination of enantiomeric composition of chiral carboxylic acids by (31)P NMR, is described.