Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; (48): 10896-903, 2009 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-20023920

RESUMO

The reaction between the complexes [MCl(L)]Cl(x) (L = 2,2',2''-terpyridine, terpy and dien, diethylenetriamine; M = Pd, x = 1; M = Au, x = 2) and [Zn(bme-dach)](2), an N(2)S(2)-Zn-thiolate bridged dimer used to mimic zinc finger protein sites, was studied by Electrospray Ionisation Mass Spectrometry and the structures of some of the products confirmed by X-ray crystallography. All reactions investigated in this work gave heteronuclear (Zn-thiolate)-metal products, the predominant species being the trinuclear dithiolate-bridged aggregate {[Zn(bme-dach)](2)M}(n+) (M = Pd, Au). X-Ray diffraction studies verified the molecular structure of [{ZnCl(bme-dach)}(2)Pd], and further confirmed that the zinc within the [Zn(bme-dach)](2) unit was retained within the N(2)S(2) binding site. The Zn-bound thiolates form stable thiolate bridges to Pd(2+) in a stair-step shape, held together by a planar PdS(4) center. In addition, both zinc atoms maintained penta-coordinate coordination with apical chloride ligands rather than the more commonly observed tetrahedral geometry. Further, [Pd(bme-dach)] was directly synthesized for X-ray structural characterization of the metal exchanged product observed in mass spectrometry experiments. In the case of Au compounds, the reactions were very fast and the products were similar for both [AuCl(L)]Cl(2) (L = terpy and dien) starting materials. In addition to the multimetallic Zn,Au,Zn aggregate formation, the predominant species from the reaction between [Zn(bme-dach)](2) and both Au compounds was the [Au(bme-dach](+) cation observable via ESI-MS, suggesting Zn/Au metal exchange immediately after mixing the compounds. The direct synthesis of [Au(bme-dach)]BPh(4) confirmed the molecular structure of this species through X-ray crystallography. The reactivity profile of Pd(2+) and Au(3+) species is compared with previous studies using the isostructural Pt compounds and the biological relevance of the results discussed.


Assuntos
Quelantes/química , Ouro/química , Compostos Organometálicos/química , Paládio/química , Compostos de Sulfidrila/química , Zinco/química , Cristalografia por Raios X , Conformação Molecular , Piridinas/química , Espectrometria de Massas por Ionização por Electrospray
2.
J Inorg Biochem ; 103(10): 1347-54, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19692125

RESUMO

The interactions of monofunctional [MCl(chelate)] compounds (M=Pt(II), Pd(II) or Au(III) and chelate=diethylenetriamine, dien or 2,2',2''-terpyridine, terpy) with the C-terminal finger of the HIV nucleocapsid NCp7 zinc finger (ZF) were studied by mass spectrometry and circular dichroism spectroscopy. In the case of [M(dien)] species, Pt(II) and Pd(II) behaved in a similar fashion with evidence of adducts caused by displacement of Pt-Cl or Pd-Cl by zinc-bound thiolate. Labilization, presumably under the influence of the strong trans influence of thiolate, resulted in loss of ligand (dien) as well as zinc ejection and formation of species with only Pd(II) or Pt(II) bound to the finger. For both Au(III) compounds the reactions were very fast and only "gold fingers" with no ancillary ligands were observed. For all terpyridine compounds ligand scrambling and metal exchange occurred with formation of [Zn(terpy)](2+). The results conform well to those proposed from the study of model Zn compounds such as N,N'-bis(2-mercapto-ethyl)-1,4-diazacycloheptanezinc(II), [Zn(bme-dach)](2). The possible structures of the adducts formed are discussed and, for Pt(II) and Pd(II), the evidence for possible expansion of the zinc coordination sphere from four- to five-coordinate is discussed. This observation reinforces the possibility of change in geometry for zinc in biology, even in common "structural" sites in metalloenzymes. The results further show that the extent and rate of zinc displacement by inorganic compounds can be modulated by the nature (metal, ligands) of the reacting compound.


Assuntos
Quelantes/química , HIV/química , Metais Pesados/química , Dedos de Zinco , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Cátions/química , Dicroísmo Circular , Espectrometria de Massas
3.
J Am Chem Soc ; 130(19): 6272-80, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18422317

RESUMO

To provide precedents for the possible interactions of platinum DNA adducts with zinc finger proteins, the complexes [Pt(dien)Cl]Cl (dien = diethylenetriamine) and [Pt(terpy)Cl]Cl (terpy = 2,2':6',2''-terpyridine) were exposed to the N,N'-bis(2-mercaptoethyl)-1,4-diazacycloheptanezinc(II) dimer, [Zn(bme-dach)]2, and the products defined by electrospray ionization mass spectrometry (ESI-MS), X-ray crystallography and (195)Pt NMR spectroscopy. The presence of a leaving chloride in both platinum(II) complexes facilitates electrophilic substitution involving sulfur-containing zinc finger synthetic models or, as in previous studies, zinc finger peptidic sequences. Monitored via ESI-MS, both reactants yielded evidence for Zn-(mu-SR)-Pt bridges followed by zinc ejection from the N2S2 coordination sphere and subsequent formation of a trimetallic Zn-(mu-SR)2-Pt-(mu-SR)2-Zn-bridged species. The isolation of Zn-(mu-SR)-Pt-bridged species [(Zn(bme-dach)Cl)(Pt(dien))]Cl is, to our knowledge, the first Zn-Pt bimetallic thiolate-bridged model demonstrating the interaction between Zn-bound thiolates and Pt(2+). In the case of the [Pt(terpy)Cl]Cl reaction with the [Zn(bme-dach)]2, ESI-MS analysis further suggests metal exchange by formation of [Zn(terpy)Cl](+), whereas the [Pt(dien)Cl]Cl reaction does not yield the corresponding [Zn(dien)Cl](+) ion. Direct synthesis of the Zn-Pt thiolate-bridged species and the Pt(N2S2) chelate, where Pt has displaced the Zn from the chelate core, permitted the isolation of X-ray-quality crystals to confirm the bridging and metal-exchanged structures. The ESI-MS, (195)Pt NMR spectroscopy, and molecular structures of the di- and trinuclear complexes will be discussed, as they provide insight into the metal-exchange mechanism.


Assuntos
Adutos de DNA/química , Proteínas de Ligação a DNA/química , Compostos Organoplatínicos/química , Platina/química , Compostos de Sulfidrila/química , Dedos de Zinco , Materiais Biomiméticos/química , Cisplatino/análogos & derivados , Cisplatino/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Espectrometria de Massas por Ionização por Electrospray , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA