Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Res ; 255: 109-118, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36526155

RESUMO

Vertical transmission of Chikungunya virus (CHIKV) has been reported in humans, but the transmission routes have not been completely understood, and experimental animal models are needed to enable detailed investigation of the transmission and pathogenesis of congenital infections. The intertwining of immune response and virus components at the gestation/breastfeeding interfaces between mother and fetus/newborn may have effects during the offspring development. An experimental model of CHIKV was established by infecting pregnant BALB/c female mice that enabled confirmation that dams inoculated up to the 10th gestational day transmit CHIKV transplacentally to approximately 8.4% of the fetuses, resulting in severe teratogenic effects. CHIKV neutralizing antibodies were detected in sera from adult mice born to healthy females and breastfed by CHIKV-infected dams, while no neutralization was detected in sera from animals born to CHIKV-infected dams. Moreover, adult mice born to healthy dams and cross-fostered for breastfeeding by CHIKV-infected dams were resistant to challenge with CHIKV on the 90th day after birth. The animals also had reduced viral loads in brain and spleen as compared to controls. There was expression of fluorescent CHIKV non-structural protein, and detection of viral RNA by RT-PCR in breast tissue from infected dams. CHIKV RNA and proteins were also detected in breast milk retrieved from the stomachs of recently fed newborns. The experimental results were also complemented by the finding of CHIKV RNA in 6% of colostrum samples from healthy lactating women in a CHIKV-endemic area. Breastfeeding induces immune protection to challenge with CHIKV in mice.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Gravidez , Feminino , Animais , Camundongos , Vírus Chikungunya/genética , Aleitamento Materno , Lactação , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , RNA
2.
Sci Adv ; 8(37): eabo5400, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103544

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces mild or asymptomatic COVID-19 in most cases, but some patients develop an excessive inflammatory process that can be fatal. As the NLRP3 inflammasome and additional inflammasomes are implicated in disease aggravation, drug repositioning to target inflammasomes emerges as a strategy to treat COVID-19. Here, we performed a high-throughput screening using a 2560 small-molecule compound library and identified FDA-approved drugs that function as pan-inflammasome inhibitors. Our best hit, niclosamide (NIC), effectively inhibits both inflammasome activation and SARS-CoV-2 replication. Mechanistically, induction of autophagy by NIC partially accounts for inhibition of NLRP3 and AIM2 inflammasomes, but NIC-mediated inhibition of NAIP/NLRC4 inflammasome are autophagy independent. NIC potently inhibited inflammasome activation in human monocytes infected in vitro, in PBMCs from patients with COVID-19, and in vivo in a mouse model of SARS-CoV-2 infection. This study provides relevant information regarding the immunomodulatory functions of this promising drug for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Inflamassomos , Animais , Humanos , Agentes de Imunomodulação , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , SARS-CoV-2
3.
mBio ; 12(4): e0046321, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34340542

RESUMO

Oropouche virus (OROV) infection of humans is associated with a debilitating febrile illness that can progress to meningitis or encephalitis. First isolated from a forest worker in Trinidad and Tobago in 1955, the arbovirus OROV has since been detected throughout the Amazon basin with an estimated 500,000 human infections over 60 years. Like other members of the family Peribunyaviridae, the viral genome exists as 3 single-stranded negative-sense RNA segments. The medium-sized segment encodes a viral glycoprotein complex (GPC) that is proteolytically processed into two viral envelope proteins, Gn and Gc, responsible for attachment and membrane fusion. There are no therapeutics or vaccines to combat OROV infection, and we have little understanding of protective immunity to infection. Here, we generated a replication competent chimeric vesicular stomatitis virus (VSV), in which the endogenous glycoprotein was replaced by the GPC of OROV. Serum from mice immunized by intramuscular injection with VSV-OROV specifically neutralized wild-type OROV, and using peptide arrays we mapped multiple epitopes within an N-terminal variable region of Gc recognized by the immune sera. VSV-OROV lacking this variable region of Gc was also immunogenic in mice producing neutralizing sera that recognize additional regions of Gc. Challenge of both sets of immunized mice with wild-type OROV shows that the VSV-OROV chimeras reduce wild-type viral infection and suggest that antibodies that recognize the variable N terminus of Gc afford less protection than those that target more conserved regions of Gc. IMPORTANCE Oropouche virus (OROV), an orthobunyavirus found in Central and South America, is an emerging public health challenge that causes debilitating febrile illness. OROV is transmitted by arthropods, and increasing mobilization has the potential to significantly increase the spread of OROV globally. Despite this, no therapeutics or vaccines have been developed to combat infection. Using vesicular stomatitis (VSV) as a backbone, we developed a chimeric virus bearing the OROV glycoproteins (VSV-OROV) and tested its ability to elicit a neutralizing antibody response. Our results demonstrate that VSV-OROV produces a strong neutralizing antibody response that is at least partially targeted to the N-terminal region of Gc. Importantly, vaccination with VSV-OROV reduces viral loads in mice challenged with wild-type virus. These data provide novel evidence that targeting the OROV glycoproteins may be an effective vaccination strategy to combat OROV infection.


Assuntos
Infecções por Bunyaviridae/prevenção & controle , Genoma Viral , Orthobunyavirus/genética , Vesiculovirus/genética , Vesiculovirus/imunologia , Proteínas do Envelope Viral/genética , Animais , Anticorpos Neutralizantes , Infecções por Bunyaviridae/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estomatite Vesicular/virologia , Replicação Viral
4.
Viruses ; 13(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540662

RESUMO

Human respiratory syncytial virus (HRSV) is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract, and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, the interest on respiratory virus infection of lymphoid cells has been growing, but details of the interaction of HRSV with lymphoid cells remain unknown. Therefore, this study was done to assess the relationship of HRSV with A3.01 cells, a human CD4+ T cell line. Using flow cytometry and fluorescent focus assay, we found that A3.01 cells are susceptible but virtually not permissive to HRSV infection. Dequenching experiments revealed that the fusion process of HRSV in A3.01 cells was nearly abolished in comparison to HEp-2 cells, an epithelial cell lineage. Quantification of viral RNA by RT-qPCR showed that the replication of HRSV in A3.01 cells was considerably reduced. Western blot and quantitative flow cytometry analyses demonstrated that the production of HRSV proteins in A3.01 was significantly lower than in HEp-2 cells. Additionally, using fluorescence in situ hybridization, we found that the inclusion body-associated granules (IBAGs) were almost absent in HRSV inclusion bodies in A3.01 cells. We also assessed the intracellular trafficking of HRSV proteins and found that HRSV proteins colocalized partially with the secretory pathway in A3.01 cells, but these HRSV proteins and viral filaments were present only scarcely at the plasma membrane. HRSV infection of A3.01 CD4+ T cells is virtually unproductive as compared to HEp-2 cells, as a result of defects at several steps of the viral cycle: Fusion, genome replication, formation of inclusion bodies, recruitment of cellular proteins, virus assembly, and budding.


Assuntos
Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Linfócitos T/virologia , Linhagem Celular , Humanos , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Montagem de Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA