Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 597(6): 836-849, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36658753

RESUMO

RhoGTPases are well known for being controllers of cell cytoskeleton and share common features in the way they act and are controlled. These include their switch from GDP to GTP states, their regulations by different guanine exchange factors (GEFs), GTPase-activating proteins and guanosine dissociation inhibitors (GDIs), and their similar structure of active sites/membrane anchors. These very similar features often lead to the common consideration that the differences in their biological effects mainly arise from the different types of regulators and specific effectors associated with each GTPase. Focusing on data obtained through biosensors, live cell microscopy and recent optogenetic approaches, we highlight in this review that the regulation of RhoA appears to depart from Cdc42 and Rac1 modes of regulation through its enhanced lability at the plasma membrane. RhoA presents a high dynamic turnover at the membrane that is regulated not only by GDIs but also by GEFs, effectors and a possible soluble conformational state. This peculiarity of RhoA regulation may be important for the specificities of its functions, such as the existence of activity waves or its putative dual role in the initiation of protrusions and contractions.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Proteína rhoA de Ligação ao GTP , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/química , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo
2.
Sci Adv ; 8(39): eabp8416, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179021

RESUMO

Cell migration is essential to living organisms and deregulated in cancer. Single cell's migration ranges from traction-dependent mesenchymal motility to contractility-driven propulsive amoeboid locomotion, but collective cell migration has only been described as a focal adhesion-dependent and traction-dependent process. Here, we show that cancer cell clusters, from patients and cell lines, migrate without focal adhesions when confined into nonadhesive microfabricated channels. Clusters coordinate and behave like giant super cells, mobilizing their actomyosin contractility at the rear to power their migration. This polarized cortex does not sustain persistent retrograde flows, of cells or actin, like in the other modes of migration but rather harnesses fluctuating cell deformations, or jiggling. Theoretical physical modeling shows this is sufficient to create a gradient of friction forces and trigger directed cluster motion. This collective amoeboid mode of migration could foster metastatic spread by enabling cells to cross a wide spectrum of environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA