Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 577(7789): 266-270, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31827282

RESUMO

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)1. Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


Assuntos
Histona Acetiltransferases/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Linhagem Celular Tumoral , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Terciária de Proteína
3.
Nature ; 560(7717): 253-257, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069049

RESUMO

Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function1. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF)2,3. KAT6A has essential roles in normal haematopoietic stem cells4-6 and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia7,8. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers8. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus9,10, a function that requires its KAT activity10. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days11. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.


Assuntos
Benzenossulfonatos/farmacologia , Senescência Celular/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Hidrazinas/farmacologia , Linfoma/tratamento farmacológico , Linfoma/patologia , Sulfonamidas/farmacologia , Acetilação/efeitos dos fármacos , Animais , Benzenossulfonatos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Desenvolvimento de Medicamentos , Fibroblastos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histonas/química , Histonas/metabolismo , Hidrazinas/uso terapêutico , Linfoma/enzimologia , Linfoma/genética , Lisina/química , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Sulfonamidas/uso terapêutico
4.
Bioorg Med Chem ; 23(19): 6280-96, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26349627

RESUMO

The serine-threonine kinase CDK9 is a target of emerging interest for the development of anti-cancer drugs. There are multiple lines of evidence linking CDK9 activity to cancer, including the essential role this kinase plays in transcriptional regulation through phosphorylation of the C-terminal domain (CTD) of RNA polymerase II. Indeed, inhibition of CDK9 has been shown to result in a reduction of short-lived proteins such as the pro-survival protein Mcl-1 in malignant cells leading to the induction of apoptosis. In this work we report our initial studies towards the discovery of selective CDK9 inhibitors, starting from the known multi-kinase inhibitor PIK-75 which possesses potent CDK9 activity. Our series is based on a pyrazolo[1,5-a]pyrimidine nucleus and, importantly, the resultant lead compound 18b is devoid of the structural liabilities present in PIK-75 and possesses greater selectivity.


Assuntos
Antineoplásicos/química , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Inibidores Enzimáticos/química , Pirazóis/química , Pirimidinas/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Hidrazonas/química , Hidrazonas/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/metabolismo
5.
J Proteome Res ; 12(7): 3104-16, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23692254

RESUMO

Kinase enrichment utilizing broad-spectrum kinase inhibitors enables the identification of large proportions of the expressed kinome by mass spectrometry. However, the existing inhibitors are still inadequate in covering the entire kinome. Here, we identified a novel bisanilino pyrimidine, CTx-0294885, exhibiting inhibitory activity against a broad range of kinases in vitro, and further developed it into a Sepharose-supported kinase capture reagent. Use of a quantitative proteomics approach confirmed the selectivity of CTx-0294885-bound beads for kinase enrichment. Large-scale CTx-0294885-based affinity purification followed by LC-MS/MS led to the identification of 235 protein kinases from MDA-MB-231 cells, including all members of the AKT family that had not been previously detected by other broad-spectrum kinase inhibitors. Addition of CTx-0294885 to a mixture of three kinase inhibitors commonly used for kinase-enrichment increased the number of kinase identifications to 261, representing the largest kinome coverage from a single cell line reported to date. Coupling phosphopeptide enrichment with affinity purification using the four inhibitors enabled the identification of 799 high-confidence phosphosites on 183 kinases, ∼10% of which were localized to the activation loop, and included previously unreported phosphosites on BMP2K, MELK, HIPK2, and PRKDC. Therefore, CTx-0294885 represents a powerful new reagent for analysis of kinome signaling networks that may facilitate development of targeted therapeutic strategies. Proteomics data have been deposited to the ProteomeXchange Consortium ( http://proteomecentral.proteomexchange.org ) via the PRIDE partner repository with the data set identifier PXD000239.


Assuntos
Fosfotransferases/isolamento & purificação , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Pirimidinas/química , ortoaminobenzoatos/química , Linhagem Celular , Cromatografia Líquida/métodos , Humanos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Espectrometria de Massas em Tandem/métodos
6.
Nature ; 483(7391): 603-7, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22460905

RESUMO

The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.


Assuntos
Bases de Dados Factuais , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Enciclopédias como Assunto , Modelos Biológicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Linhagem da Célula , Cromossomos Humanos/genética , Ensaios Clínicos como Assunto/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes ras/genética , Genoma Humano/genética , Genômica , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Farmacogenética , Plasmócitos/citologia , Plasmócitos/efeitos dos fármacos , Plasmócitos/metabolismo , Medicina de Precisão/métodos , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Análise de Sequência de DNA , Inibidores da Topoisomerase/farmacologia
7.
Neuron ; 56(4): 621-39, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18031681

RESUMO

Development of appropriate dendritic arbors is crucial for neuronal information transfer. We show, using seizure-related gene 6 (sez-6) null mutant mice, that Sez-6 is required for normal dendritic arborization of cortical neurons. Deep-layer pyramidal neurons in the somatosensory cortex of sez-6 null mice exhibit an excess of short dendrites, and cultured cortical neurons lacking Sez-6 display excessive neurite branching. Overexpression of individual Sez-6 isoforms in knockout neurons reveals opposing actions of membrane-bound and secreted Sez-6 proteins, with membrane-bound Sez-6 exerting an antibranching effect under both basal and depolarizing conditions. Layer V pyramidal neurons in knockout brain slices show reduced excitatory postsynaptic responses and a reduced dendritic spine density, reflected by diminished punctate staining for postsynaptic density 95 (PSD-95). In behavioral tests, the sez-6 null mice display specific exploratory, motor, and cognitive deficits. In conclusion, cell-surface protein complexes involving Sez-6 help to sculpt the dendritic arbor, in turn enhancing synaptic connectivity.


Assuntos
Córtex Cerebral/anormalidades , Córtex Cerebral/citologia , Dendritos/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas do Tecido Nervoso/genética , Células Piramidais/citologia , Animais , Diferenciação Celular/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Dendritos/metabolismo , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Proteína 4 Homóloga a Disks-Large , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Guanilato Quinases , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/fisiopatologia , Vias Neurais/anormalidades , Vias Neurais/citologia , Vias Neurais/metabolismo , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Células Piramidais/metabolismo , Transmissão Sináptica/genética
8.
Cytometry A ; 71(10): 889-95, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17868085

RESUMO

Manual neuron tracing is a very labor-intensive task. In the drug screening context, the sheer number of images to process means that this approach is unrealistic. Moreover, the lack of reproducibility, objectivity, and auditing capability of manual tracing is limiting even in the context of smaller studies. We have developed fast, sensitive, and reliable algorithms for the purpose of detecting and analyzing neurites in cell cultures, and we have integrated them in software called HCA-Vision, suitable for the research environment. We validate the software on images of cortical neurons by comparing results obtained using HCA-Vision with those obtained using an established semi-automated tracing solution (NeuronJ). The effect of the Sez-6 deletion was characterized in detail. Sez-6 null neurons exhibited a significant increase in neurite branching, although the neurite field area was unchanged due to a reduction in mean branch length. HCA-Vision delivered considerable speed benefits and reliable traces.


Assuntos
Córtex Cerebral/citologia , Neuritos/metabolismo , Reconhecimento Automatizado de Padrão/métodos , Software , Animais , Células Cultivadas , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Knockout
9.
Int J Gynecol Pathol ; 24(4): 363-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16175083

RESUMO

Dysfunction of proteins involved in the G1 to S transition of the cell cycle, such as p16(INK4A) and RB1, is common in many cancer types. A screen of p16 protein expression was performed in benign, borderline, and invasive ovarian tumors, together with endometrial cancers, aligned on a tissue microarray. We observed frequent p16 overexpression in serous papillary carcinomas of ovarian and endometrial origin. An extended cohort of ovarian serous papillary carcinomas was examined to further evaluate the frequency of p16 overexpression. Strong, uniform staining in the majority of cancer cells occurred commonly in invasive serous papillary ovarian cancers, particularly in grade 3 carcinomas. RB1 protein expression abnormalities were rare. Our data indicate that abnormalities in the retinoblastoma pathway, as determined by p16 overexpression, are common in serous papillary carcinomas and are probably an early event.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/análise , Cistadenocarcinoma Papilar/metabolismo , Neoplasias Ovarianas/metabolismo , Proteína do Retinoblastoma/fisiologia , Adulto , Cistadenocarcinoma Papilar/química , Cistadenocarcinoma Papilar/patologia , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Ovarianas/química , Neoplasias Ovarianas/patologia
10.
Cancer Genet Cytogenet ; 160(2): 134-40, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15993269

RESUMO

Loss of genetic material from chromosome arm 8p occurs frequently in human breast carcinomas, consistent with this region of the genome harboring one or more tumor suppressor genes (TSGs). We used the complementary techniques of microsatellite-based LOH, high-density FISH, and conventional CGH on 6 breast cancer cell lines (MCF7, SKBR3, T47D, MDA MB453, BT549, and BT474) to investigate the molecular cytogenetic changes occurring on chromosome 8 during tumorigenesis, with particular emphasis on 6 potential TSGs on 8p. We identified multiple alterations of chromosome 8, including partial or complete deletion of 8p or 8q, duplication of 8q, and isochromosome 8q. The detailed FISH analysis showed several complex rearrangements of 8p with differing breakpoints of varying proximity to the genes of interest. High rates of LOH were observed at markers adjacent to or within PCM1, DUSP4/MKP2, NKX3A, and DLC1, supporting their status as candidate TSGs. Due to the complex ploidy status of these cell lines, relative loss of 8p material detected by CGH did not always correlate with microsatellite-based LOH results. These results extend our understanding of the mechanisms accompanying the dysregulation of candidate tumor suppressor loci on chromosome arm 8p, and identify appropriate cellular systems for further investigation of their biological properties.


Assuntos
Neoplasias da Mama/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 8/genética , Genes Supressores de Tumor , Alelos , Linhagem Celular Tumoral , Humanos , Hibridização in Situ Fluorescente , Perda de Heterozigosidade/genética , Repetições de Microssatélites/genética , Hibridização de Ácido Nucleico
11.
Pathology ; 36(4): 295-300, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15370126

RESUMO

Tissue microarrays are a recent innovation in the field of pathology. They were originally designed as a high-throughput approach for researchers to assess the expression of interesting candidate disease-related genes or gene products simultaneously on hundreds of tissue samples. However, their use is becoming more widespread in routine pathology, for example for quality assurance and for the optimisation of diagnostic reagents such as monoclonal antibodies and gene probes. Several molecular and conventional pathological techniques can be performed on a single tissue array, thereby enabling morphology, DNA, RNA and protein targets to be analysed on sequential sections through multiple tissue samples. Moreover, compared with full-face tissue sections, tissue microarrays are a cost- and time-efficient, effective approach to analysing biomarker expression on a large number of samples. Whilst tissue microarrays are available from commercial sources, many pathology laboratories prefer to make in-house arrays from their often extensive pathology archive to facilitate the correlation of their findings with clinical parameters. The technical skills necessary to produce tissue arrays are well within the capacity of most laboratories. However, several pitfalls to successful array production exist. The present article describes the applications of this technique and details practical points for optimal tissue array production.


Assuntos
Perfilação da Expressão Gênica/métodos , Imuno-Histoquímica , Hibridização In Situ , Inclusão em Parafina
12.
Oncogene ; 23(33): 5697-702, 2004 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15184884

RESUMO

Loss of genetic material from chromosome arm 8p occurs commonly in breast carcinomas, suggesting that this region is the site of one or more tumor-suppressor genes (TSGs). Comparative genomic hybridization analysis showed that 8p loss is more common in breast cancers from pre-menopausal compared with post-menopausal patients, as well as in high-grade breast cancers, regardless of the menopausal status. Subsequent high-resolution gene expression profiling of genes mapped to chromosome arm 8p, on an extended cohort of clinical tumor samples, indicated a similar dichotomy of breast cancer clinicopathologic types. Some of these genes showed differential downregulation in early-onset and later-onset, high-grade cancers compared with lower-grade, later-onset cancers. Three such genes were analysed further by in situ technologies, performed on tissue microarrays representing breast tumor and normal tissue samples. PCM1, which encodes a centrosomal protein, and DUSP4/MKP-2, which encodes a MAP kinase phosphatase, both showed frequent gene and protein loss in carcinomas. In contrast, there was an excess of cases showing loss of expression in the absence of reduced gene copy number of SFRP1, which encodes a dominant-negative receptor for Wnt-family ligands. These candidate TSGs may constitute some of the molecular drivers of chromosome arm 8p loss in breast carcinogenesis.


Assuntos
Neoplasias da Mama/genética , Deleção Cromossômica , Cromossomos Humanos Par 8 , Genes Supressores de Tumor , Feminino , Dosagem de Genes , Humanos , Hibridização in Situ Fluorescente , Menopausa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA