Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37514600

RESUMO

The Internet of Things (IoT) introduces significant security vulnerabilities, raising concerns about cyber-attacks. Attackers exploit these vulnerabilities to launch distributed denial-of-service (DDoS) attacks, compromising availability and causing financial damage to digital infrastructure. This study focuses on mitigating DDoS attacks in corporate local networks by developing a model that operates closer to the attack source. The model utilizes Host Intrusion Detection Systems (HIDS) to identify anomalous behaviors in IoT devices and employs network-based intrusion detection approaches through a Network Intrusion Detection System (NIDS) for comprehensive attack identification. Additionally, a Host Intrusion Detection and Prevention System (HIDPS) is implemented in a fog computing infrastructure for real-time and precise attack detection. The proposed model integrates NIDS with federated learning, allowing devices to locally analyze their data and contribute to the detection of anomalous traffic. The distributed architecture enhances security by preventing volumetric attack traffic from reaching internet service providers and destination servers. This research contributes to the advancement of cybersecurity in local network environments and strengthens the protection of IoT networks against malicious traffic. This work highlights the efficiency of using a federated training and detection procedure through deep learning to minimize the impact of a single point of failure (SPOF) and reduce the workload of each device, thus achieving accuracy of 89.753% during detection and increasing privacy issues in a decentralized IoT infrastructure with a near-real-time detection and mitigation system.

2.
Molecules ; 27(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408535

RESUMO

Organic compounds have been employed in developing new green energy solutions with good cost-efficiency compromise, such as photovoltaics. The light-harvesting process in these applications is a crucial feature that still needs improvements. Here, we studied natural dyes to propose an alternative for enhancing the light-harvesting capability of photovoltaics. We performed density functional theory calculations to investigate the electronic and optical properties of the four natural dyes found in achiote seeds (Bixa orellana L.). Different DFT functionals, and basis sets, were used to calculate the electronic and optical properties of the bixin, norbixin, and their trans-isomers (molecules present in Bixa orellana L.). We observed that the planarity of the molecules and their similar extension for the conjugation pathways provide substantially delocalized wavefunctions of the frontier orbitals and similar values for their energies. Our findings also revealed a strong absorption peak in the blue region and an absorption band over the visible spectrum. These results indicate that Bixa orellana L. molecules can be good candidates for improving light-harvesting in photovoltaics.


Assuntos
Bixaceae , Sementes , Bixaceae/metabolismo , Carotenoides , Corantes/metabolismo , Eletrônica , Sementes/metabolismo
3.
Sci Justice ; 62(2): 181-192, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35277232

RESUMO

Fingerprints do not repeat, varying from region to region on the same fingerprint and from person to person. Using this morphological exclusivity in the individualization of people is considered one of the most reliable methods of identification worldwide. Many populations have been studied with respect to sex determination from fingerprints. In this study, the ridge density from two different areas - ulnar and radial - of the ten fingerprints from 100 Brazilian men and 100 Brazilian women was ascertained and statistically analyzed. The aim was to check whether these characteristics depended on sex to distinguish them categorically. Women had significantly higher ridge density in both areas for the fingers analyzed globally. Sometimes, men and women showed statistically significant differences in hands and fingers. From ulnar and radial ridge densities, this research developed thresholds for sexual discrimination cases of human identification in Brazil.


Assuntos
Dermatoglifia , Caracteres Sexuais , Brasil , Feminino , Dedos , Antropologia Forense , Humanos , Masculino
4.
Sensors (Basel) ; 21(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209509

RESUMO

The management practicality and economy offered by the various technological solutions based on cloud computing have attracted many organizations, which have chosen to migrate services to the cloud, despite the numerous challenges arising from this migration. Cloud storage services are emerging as a relevant solution to meet the legal requirements of maintaining custody of electronic documents for long periods. However, the possibility of losses and the consequent financial damage require the permanent monitoring of this information. In a previous work named "Monitoring File Integrity Using Blockchain and Smart Contracts", the authors proposed an architecture based on blockchain, smart contract, and computational trust technologies that allows the periodic monitoring of the integrity of files stored in the cloud. However, the experiments carried out in the initial studies that validated the architecture included only small- and medium-sized files. As such, this paper presents a validation of the architecture to determine its effectiveness and efficiency when storing large files for long periods. The article provides an improved and detailed description of the proposed processes, followed by a security analysis of the architecture. The results of both the validation experiments and the implemented defense mechanism analysis confirm the security and the efficiency of the architecture in identifying corrupted files, regardless of file size and storage time.


Assuntos
Blockchain , Computação em Nuvem , Tecnologia
5.
Sci Rep ; 10(1): 16748, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028927

RESUMO

Penta-graphene (PG) is a carbon allotrope that has recently attracted the attention of the materials science community due to its interesting properties for renewable energy applications. Although unstable in its pure form, it has been shown that functionalization may stabilize its structure. A question that arises is whether its outstanding electronic properties could also be further improved using such a procedure. As PG bilayers present both sp[Formula: see text] and sp[Formula: see text] carbon planes, it consists of a flexible candidate for functionalization tuning of electromagnetic properties. In this work, we perform density functional theory calculations to investigate how the electronic and structural properties of PG bilayers can be tuned as a result of substitutional doping. Specifically, we observed the emergence of different magnetic properties when boron and nitrogen were used as dopant species. On the other hand, in the case of doping with oxygen, the rupture of bonds in the sp[Formula: see text] planes has not induced a magnetic moment in the material.

6.
J Mol Model ; 25(6): 149, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065812

RESUMO

In organic molecular crystals, the polaronic hopping model for the charge transport assumes that the carrier lies at one or a small number of molecules. Such a kind of localization suffers the influence of the non-local electron-phonon (e-ph) interactions associated with intermolecular lattice vibrations. Here, we developed a model Hamiltonian for numerically describing the role played by the intermolecular e-ph interactions on the stationary and dynamical properties of polarons in a two-dimensional array of molecules. We allow three types of electron hopping mechanisms and, consequently, for the nonlocal e-ph interactions: horizontal, vertical, and diagonal. Remarkably, our findings show that the stable polarons are not formed for isotropic arrangements of the intermolecular transfer integrals, regardless of the strengths of the e-ph interactions. Interestingly, the diagonal channel for the e-ph interactions changes the transport mechanism by sharing the polaronic charge between parallel molecular lines in a breather-like mode.

7.
Phys Chem Chem Phys ; 21(21): 11168-11174, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31098601

RESUMO

The structural and electronic properties of MoS2 sheets doped with carbon line domains are theoretically investigated through density functional theory calculations. It is primarily studied how the system's electronic properties change when different domain levels are considered. These changes are also reflected in the geometry of the system, which acquires new properties when compared to the pristine structure. We predict, both qualitative and quantitatively, how the energy gap changes as a function of domain types. Strikingly, the band structure for the doped system shows semiconducting behavior with an indirect-bandgap, which is narrower than the one for bulk MoS2. This is an important feature as far as gap tuning engineering is concerned. It has a profound impact on the applicability of these systems in electronic devices, where an indirect bandgap favors the quantum yield efficiency.

8.
Sci Rep ; 9(1): 2909, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814607

RESUMO

Graphene nanoribbons (GNRs) are two-dimensional structures with a rich variety of electronic properties that derive from their semiconducting band gaps. In these materials, charge transport can occur via a hopping process mediated by carriers formed by self-interacting states between the excess charge and local lattice deformations. Here, we use a two-dimensional tight-binding approach to reveal the formation of bipolarons in GNRs. Our results show that the formed bipolarons are dynamically stable even for high electric field strengths when it comes to GNRs. Remarkably, the bipolaron dynamics can occur in acoustic and optical regimes concerning its saturation velocity. The phase transition between these two regimes takes place for a critical field strength in which the bipolaron moves roughly with the speed of sound in the material.

9.
Phys Chem Chem Phys ; 21(5): 2727-2733, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30664136

RESUMO

Polarons play a crucial role in the charge transport mechanism when it comes to organic molecular crystals. The features of their underlying properties - mostly the ones that directly impact the yield of the net charge mobility - are still not completely understood. Here, a two-dimensional Holstein-Peierls model is employed to numerically describe the stationary polaron properties in organic semiconductors at a molecular scale. Our computational protocol yields model parameters that accurately characterize the formation and stability of polarons in ordered and disordered oligoacene-like crystals. The results show that the interplay between the intramolecular (Holstein) and intermolecular (Peierls) electron-lattice interactions critically impacts the polaron stability. Such an interplay can produce four distinct quasi-particle solutions: free-like electrons, metastable polarons, and small and large polarons. The latter governs the charge transport in organic crystalline semiconductors. Regarding disordered lattices, the model takes into account two modes of static disorder. Interestingly, the results show that intramolecular disorder is always unfavorable to the formation of polarons whereas intermolecular disorder may favor the polaron generation in regimes below a threshold for the electronic transfer integral strength.

10.
Sensors (Basel) ; 18(9)2018 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-30149678

RESUMO

We present a novel technique for source authentication of a packet stream in a network, which intends to give guarantees that a specific network flow really comes from a claimed origin. This mechanism, named packet level authentication (PLA), can be an essential tool for addressing Denial of Service (DoS) attacks. Based on designated verifier signature schemes, our proposal is an appropriate and unprecedented solution applying digital signatures for DoS prevention. Our scheme does not rely on an expensive public-key infrastructure and makes use of light cryptography machinery that is suitable in the context of the Internet of Things (IoT). We analyze our proposed scheme as a defense measure considering known DoS attacks and present a formal proof of its resilience face to eventual adversaries. Furthermore, we compare our solution to already existent strategies, highlighting its advantages and drawbacks.

11.
Phys Chem Chem Phys ; 20(24): 16712-16718, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29878013

RESUMO

An important aspect concerning the performance of armchair graphene nanoribbons (AGNRs) as materials for conceiving electronic devices is related to the mobility of charge carriers in these systems. When several polarons are considered in the system, a quasi-particle wave function can be affected by that of its neighbor provided the two are close enough. As the overlap may affect the transport of the carrier, the question concerning how the density of polarons affect its mobility arises. In this work, we investigate such dependence for semiconducting AGNRs in the scope of nonadiabatic molecular dynamics. Our results unambiguously show an impact of the density on both the stability and average velocity of the quasi-particles. We have found a phase transition between regimes where increasing density stops inhibiting and starts promoting mobility; densities higher than 7 polarons per 45 Å present increasing mean velocity with increasing density. We have also established three different regions relating electric field and average velocity. For the lowest electric field regime, surpassing the aforementioned threshold results in overcoming the 0.3 Å fs-1 limit, thus representing a transition between subsonic and supersonic regimes. For the highest of the electric fields, density effects alone are responsible for a stunning difference of 1.5 Å fs-1 in the mean carrier velocity.

12.
Sensors (Basel) ; 18(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498641

RESUMO

Cloud computing is considered an interesting paradigm due to its scalability, availability and virtually unlimited storage capacity. However, it is challenging to organize a cloud storage service (CSS) that is safe from the client point-of-view and to implement this CSS in public clouds since it is not advisable to blindly consider this configuration as fully trustworthy. Ideally, owners of large amounts of data should trust their data to be in the cloud for a long period of time, without the burden of keeping copies of the original data, nor of accessing the whole content for verifications regarding data preservation. Due to these requirements, integrity, availability, privacy and trust are still challenging issues for the adoption of cloud storage services, especially when losing or leaking information can bring significant damage, be it legal or business-related. With such concerns in mind, this paper proposes an architecture for periodically monitoring both the information stored in the cloud and the service provider behavior. The architecture operates with a proposed protocol based on trust and encryption concepts to ensure cloud data integrity without compromising confidentiality and without overloading storage services. Extensive tests and simulations of the proposed architecture and protocol validate their functional behavior and performance.

13.
J Mol Model ; 23(12): 343, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29147781

RESUMO

We systematically investigate, at density functional theory level, the electronic properties of a set of ten carotenoid molecules with different conjugation length. Ground state geometries were fully optimized using both B3LYP and its long-range corrected version, i.e., the CAM-B3LYP functional. The time-dependent DFT approach (TD-DFT) was also performed for the calculation of the excited states of the optimized geometries and the results were compared to the experimental ones, when available. Our findings indicate a dependence of the transition vertical energies, oscillator strengths, and transition dipole moments on the extension of conjugation, as expected. We also investigate the impact of the intra-molecular vibrations on the absorption spectrum by means of the Franck-Condon (FC) and nuclear ensemble (NE) approach to spectra simulation. Our simulations suggest that the Franck-Condon approximation may not be suitable to appropriately characterize the vibronic progression of these molecules, whereas the NE approach provides a contribution that vary from negligible to meaningful depending on which molecule and energy region is under analysis.

14.
Sensors (Basel) ; 17(5)2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28448469

RESUMO

The development of the Internet of Things (IoT) is closely related to a considerable increase in the number and variety of devices connected to the Internet. Sensors have become a regular component of our environment, as well as smart phones and other devices that continuously collect data about our lives even without our intervention. With such connected devices, a broad range of applications has been developed and deployed, including those dealing with massive volumes of data. In this paper, we introduce a Distributed Data Service (DDS) to collect and process data for IoT environments. One central goal of this DDS is to enable multiple and distinct IoT middleware systems to share common data services from a loosely-coupled provider. In this context, we propose a new specification of functionalities for a DDS and the conception of the corresponding techniques for collecting, filtering and storing data conveniently and efficiently in this environment. Another contribution is a data aggregation component that is proposed to support efficient real-time data querying. To validate its data collecting and querying functionalities and performance, the proposed DDS is evaluated in two case studies regarding a simulated smart home system, the first case devoted to evaluating data collection and aggregation when the DDS is interacting with the UIoT middleware, and the second aimed at comparing the DDS data collection with this same functionality implemented within the Kaa middleware.

15.
J Mol Model ; 23(5): 172, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28455637

RESUMO

Phthalocyanines represent a crucial class of organic compounds with high technological appeal. By doping the center of these systems with metals, one obtains the so-called metal-phthalocyanines, whose property of being an effective electron donor allows for potentially interesting uses in organic electronics. In this sense, investigating optical and electronic structure changes in the phthalocyanine profiles in the presence of different metals is of fundamental importance for evaluating the appropriateness of the resulting system as far as these uses are concerned. In the present work, we carry out this kind of effort for phthalocyanines doped with different metals, namely, copper, nickel, and magnesium. Density functional theory was applied to obtain the absorption spectra, and electronic and structural properties of the complexes. Our results suggest that depending on the dopant, a different level of change is achieved. Moreover, electrostatic potential energy mapping shows how the charge distribution can be affected by solar radiation. Our contribution is crucial in describing the best possible candidates for use in different organic photovoltaic applications. Graphical Abstract Representation of meta-phthalocyanine systems. All calculations of this work are based on varying metal position along z axis, considering the z-axis has its zero point matching with the center of phthalocyanine cavityconsidering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA