Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Expert Opin Biol Ther ; : 1-13, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39323363

RESUMO

INTRODUCTION: Gestational diabetes mellitus (GDM) has become the most common pregnancy medical complication, and its prevalence has increased in recent years. The GDM treatment primarily relies on adopting healthy eating habits, physical exercise, and insulin therapy. However, using probiotics to modulate the gut microbiota has been the subject of clinical trials as a promising therapeutic strategy for GDM management. AREAS COVERED: Due to the adverse effects of gut dysbiosis in women with GDM, strategies targeting the gut microbiota to mitigate hyperglycemia, low-grade inflammation, and adverse pregnancy outcomes have been explored. Probiotic supplementation may improve glucose metabolism, lipid profile, oxidative stress, inflammation, and blood pressure in women with GDM. Furthermore, decreased fasting blood glucose, insulin resistance, and inflammatory markers, such as TNF-α and CRP, as well as increased total antioxidant capacity, lipid profile modulation, and improved blood pressure in women with GDM, are some of the important results reported in the available literature. EXPERT OPINION: To fill the knowledge gap, further studies are needed focusing on modulating gut microbiota composition and metabolic activity and their systemic repercussions in GDM.

2.
Foods ; 13(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39335815

RESUMO

Atherosclerosis (AS) is a chronic inflammatory vascular disease. Dysregulated lipid metabolism, oxidative stress, and inflammation are the major mechanisms implicated in the development of AS. In addition, evidence suggests that gut dysbiosis plays an important role in atherogenesis, and modulation of the gut microbiota with probiotics and phenolic compounds has emerged as a promising strategy for preventing and treating AS. It has been shown that probiotics and phenolic compounds can improve atherosclerosis-related parameters by improving lipid profile, oxidative stress, and inflammation. In addition, these compounds may modulate the diversity and composition of the gut microbiota and improve atherosclerosis. The studies evaluated in the present review showed that probiotics and phenolic compounds, when consumed individually, improved atherosclerosis by modulating the gut microbiota in various ways, such as decreasing gut permeability, decreasing TMAO and LPS levels, altering alpha and beta diversity, and increasing fecal bile acid loss. However, no study was found that evaluated the combined use of probiotics and phenolic compounds to improve atherosclerosis. The available literature highlights the synergistic potential between phenolic compounds and probiotics to improve their health-promoting properties and functionalities. This review aims to summarize the available evidence on the individual effects of probiotics and phenolic compounds on AS, while providing insights into the potential benefits of nutraceutical approaches using probiotic strains, quercetin, and resveratrol as potential adjuvant therapies for AS treatment through modulation of the gut microbiota.

3.
Pharmacol Res ; 208: 107368, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39191337

RESUMO

Nutraceuticals have been described as phytocomplexes when derived from foods of plant origin or a pool of secondary metabolites when derived from foods of animal origin, which are concentrated and administered in an appropriate form and can promote beneficial health effects in the prevention/treatment of diseases. Considering that pharmaceutical medications can cause side effects, there is a growing interest in using nutraceuticals as an adjuvant therapeutic tool for several disorders involving autonomic dysfunction, such as obesity, atherosclerosis and other cardiometabolic diseases. This review summarizes and discusses the evidence from the literature on the effects of various nutraceuticals on autonomic control, addressing the gut microbiota modulation, production of secondary metabolites from bioactive compounds, and improvement of physical and chemical properties of cell membranes. Additionally, the safety of nutraceuticals and prospects are discussed. Probiotics, resveratrol, quercetin, curcumin, nitrate, inositol, L-carnosine, and n-3 polyunsaturated fatty acids (n-3 PUFAs) are among the nutraceuticals most studied to improve autonomic dysfunction in experimental animal models and clinical trials. Further human studies are needed to elucidate the effects of nutraceuticals formulated of multitarget compounds and their underlying mechanisms of action, which could benefit conditions involving autonomic dysfunction.


Assuntos
Suplementos Nutricionais , Humanos , Animais , Doenças do Sistema Nervoso Autônomo/tratamento farmacológico , Doenças do Sistema Nervoso Autônomo/dietoterapia , Microbioma Gastrointestinal/efeitos dos fármacos , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiopatologia , Probióticos/uso terapêutico
4.
Compr Rev Food Sci Food Saf ; 23(5): e13427, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39137002

RESUMO

Colletotrichum spp. is a phytopathogen causing anthracnose in a variety of tropical fruits. Strategies used to control postharvest diseases in tropical fruits typically rely on the use of synthetic fungicides, which have stimulated the emergence of resistant pathogens. Safer alternative strategies to control anthracnose in tropical fruits have been described in the literature. This review presents and discusses the main innovative interventions concerning the application of sustainable alternative strategies in the postharvest control of pathogenic Colletotrichum species in tropical fruits, with a particular emphasis on the studies published in the last 5 years. The available studies have shown the use of various methods, including physical barriers, natural antimicrobials, and biological control with antagonistic microorganisms, to reduce anthracnose lesion severity and incidence in tropical fruits. The available literature showed high inhibitory activity in vitro, reduced anthracnose incidence and lesion diameter, and total disease inhibition in tropical fruits. Most studies focused on the inhibition of Colletotrichum gloeosporioides on avocado, papaya, and mango, as well as of Colletotrichum musae on banana; however, the inhibition of other Colletotrichum species was also demonstrated. The application of emerging sustainable alternative methods, including natural antimicrobial substances, also stimulated the induction of defense systems in tropical fruits, including enzymatic activity, such as polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase. The retrieved data helped to understand the current state of the research field and reveal new perspectives on developing efficient and sustainable intervention strategies to control pathogenic Colletotrichum species and anthracnose development in tropical fruits.


Assuntos
Colletotrichum , Frutas , Doenças das Plantas , Frutas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Conservação de Alimentos/métodos , Clima Tropical , Fungicidas Industriais/farmacologia
5.
Food Res Int ; 192: 114730, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147547

RESUMO

Coffee husks are the main by-product of the coffee industry and have been traditionally discarded in the environment or used as fertilizers. However, recent studies have shown that coffee husks have bioactive compounds, such as phenolics and fiber-bound macro antioxidants, offering a range of potential health benefits. This study evaluated the antioxidant capacity, cytoprotective/cytotoxic properties, and stimulatory effects on the relative abundance of selected intestinal bacterial populations of individuals with diabetes of organic coffee husks. Organic coffee husk had good antioxidant capacity, maintained under simulated gastric conditions, with more than 50% of antioxidant capacity remaining. Organic coffee husk exerted cytoprotective properties in Caco-2 cells, indicating that cellular functions were not disturbed, besides not inducing oxidation. Overall, organic coffee husk promoted positive effects on the abundance of distinct intestinal bacterial groups of individuals with diabetes during in vitro colonic fermentation, with a higher relative abundance of Bifidobacterium spp., indicating the availability of components able to reach the colon to be fermented by intestinal microbiota. Organic coffee husk could be a circular material to develop new safe and pesticide-free functional ingredients with antioxidant and potential beneficial effects on human intestinal microbiota.


Assuntos
Antioxidantes , Café , Microbioma Gastrointestinal , Humanos , Antioxidantes/farmacologia , Células CACO-2 , Café/química , Microbioma Gastrointestinal/efeitos dos fármacos , Fermentação , Diabetes Mellitus , Coffea/química , Bactérias/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-39162967

RESUMO

This study developed and evaluated chitosan-sodium alginate capsules containing the probiotic Lacticaseibacillus rhamnosus GG using extrusion and emulsification techniques. The encapsulated L. rhamnosus GG cells were also evaluated for technological and probiotic-related physiological functionalities, as well as when incorporated in UHT and powdered milk. Extrusion (86.01 ± 1.26%) and emulsification (74.43 ± 1.41%) encapsulation techniques showed high encapsulation efficiency and high survival rates of L. rhamnosus GG during 28 days of refrigeration and room temperature storage, especially emulsification capsules (> 81%). The encapsulated L. rhamnosus GG cells showed high survival rates during exposure to simulated gastrointestinal conditions (72.65 ± 1.09-114.15 ± 0.44%). L. rhamnosus GG encapsulated by extrusion and emulsification performed satisfactorily in probiotic-related physiological (pH and bile salts tolerance) and technological properties (positive proteolytic activity, diacetyl and exopolysaccharides production, high NaCl tolerance (> 91%), besides having high heat tolerance (> 76%)). L. rhamnosus GG in extrusion and emulsification capsules had high survival rates (> 89%) and did not significantly affect physicochemical parameters in Ultra-High Temperature (UHT) and powdered milk during storage. The results demonstrate that L. rhamnosus GG can be successfully encapsulated with alginate-chitosan as a protective material through extrusion and emulsification techniques. UHT and powdered milk could serve as appropriate delivery systems to increase the intake of this encapsulated probiotic by consumers.

7.
Food Microbiol ; 123: 104596, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038898

RESUMO

This study evaluated the use of acerola (Malpighia glabra L., CACE), cashew (Anacardium occidentale L., CCAS), and guava (Psidium guayaba L., CGUA) fruit processing coproducts as substrates to promote the growth, metabolite production, and maintenance of the viability/metabolic activity of the probiotics Lactobacillus acidophilus LA-05 and Lacticaseibacillus paracasei L-10 during cultivation, freeze-drying, storage, and exposure to simulated gastrointestinal digestion. Probiotic lactobacilli presented high viable counts (≥8.8 log colony-forming units (CFU)/mL) and a short lag phase during 24 h of cultivation in CACE, CCAS, and CGUA. Cultivation of probiotic lactobacilli in fruit coproducts promoted sugar consumption, medium acidification, and production of organic acids over time, besides increasing the of several phenolic compounds and antioxidant activity. Probiotic lactobacilli cultivated in fruit coproducts had increased survival percentages after freeze-drying and during 120 days of refrigerated storage. Moreover, probiotic lactobacilli cultivated and freeze-dried in fruit coproducts had larger subpopulations of live and metabolically active cells when exposed to simulated gastrointestinal digestion. The results showed that fruit coproducts not only improved the growth and helped to maintain the viability and metabolic activity of probiotic strains but also enriched the final fermented products with bioactive compounds, being an innovative circular strategy for producing high-quality probiotic cultures.


Assuntos
Frutas , Probióticos , Probióticos/metabolismo , Frutas/microbiologia , Lactobacillus acidophilus/crescimento & desenvolvimento , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/fisiologia , Anacardium/microbiologia , Anacardium/crescimento & desenvolvimento , Psidium/crescimento & desenvolvimento , Psidium/microbiologia , Malpighiaceae/crescimento & desenvolvimento , Malpighiaceae/microbiologia , Liofilização , Viabilidade Microbiana , Lacticaseibacillus paracasei/crescimento & desenvolvimento , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus paracasei/fisiologia , Fermentação , Manipulação de Alimentos/métodos
8.
Artigo em Inglês | MEDLINE | ID: mdl-38842655

RESUMO

Preclinical evidence suggests that probiotic administration may exert an anti-inflammatory effect and reduce autonomic dysfunction and blood pressure. This study evaluated the effects of probiotic therapy on inflammatory biomarkers and characterized the correlations between inflammation and cardiac autonomic function in women with arterial hypertension. Women were randomized into probiotics (n = 20) or placebo (n = 20). The probiotic group received 109 CFU/day of Lactobacillus (L.) paracasei LPC-37, L. rhamnosus HN001, L. acidophilus NCFM, and Bifidobacterium lactis HN019, and the placebo group received polydextrose. Clinical, electrocardiogram, heart rate variability (HRV) analysis, and cytokine levels were assessed at baseline and after 8 weeks. Women who received probiotics for 8 weeks had increased serum levels of IL-17A (p = 0.02) and decreased INF-γ (p = 0.02) compared to baseline. Probiotic supplementation increased serum levels of IL-10 compared to the placebo group (p = 0.03). Probiotic or placebo administration did not change serum levels of TNFα and IL-6. Serum levels of IL-2 (p = 0.001, and p = 0.001) and IL-4 (p = 0.001, and p = 0.001) were reduced in women receiving placebo or probiotics, respectively. Correlations between HRV indices and inflammatory variables showed that INF-γ was positively correlated with heart rate (HR) and sympathetic HRV indices and negatively correlated with vagal HRV indices. IL-10 was negatively correlated with HR and sympathetic HRV indices. IL-6 was negatively correlated with parasympathetic HRV indices and positively correlated with SD2/SD1 ratio. Probiotic therapy has a discreet anti-inflammatory effect in hypertensive women, and pro-inflammatory cytokines were negatively correlated with vagal modulation and positively correlated with sympathetic modulation of HRV. The clinical trial was registered in the Brazilian Registry of Clinical Trials (ReBEC) with the identification RBR-9mj2dt.

9.
Microorganisms ; 12(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930581

RESUMO

Sourdough production is a complex fermentation process. Natural sourdough fermentation without standardization causes great variability in microbial communities and derived products. Starter cultures have emerged as alternatives to natural fermentation processes, which could improve bakery quality and produce bioactive compounds. This study aimed to evaluate the impacts of freeze-drying on the production and viability of sourdoughs with Lactiplantibacillus pentosus 129 (Lp) and Limosilactobacillus fermentum 139 (Lf), as well as their effects on the quality of long-fermentation bread. These strains were selected based on their better performance considering acidification and exopolysaccharide production capacity. Sourdough with Lp and Lf were propagated until the 10th day, when physicochemical and microbiological parameters were determined. The produced sourdoughs were freeze-dried, and bread samples were produced. The freeze-drying process resulted in high survival rates and few impacts on the metabolic activity of Lp and Lf until 60 days of storage. Incorporating Lp and Lf improved the microbiological and physicochemical properties of sourdough and long-fermentation breads. Tested freeze-dried sourdoughs led to reduced bread aging (higher specific volume and decreased starch retrogradation) and increased digestibility. The results show the potential of the freeze-dried sourdoughs produced with Lp and Lf as innovative strategies for standardizing production protocols for the bakery industry, especially for producing long-term fermentation bread.

10.
Int J Food Microbiol ; 417: 110695, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38636163

RESUMO

This study isolated and identified autochthonous lactic acid bacteria (LAB) from mandacaru fruit and evaluated their potential probiotic and technological aptitudes in vitro, as well as the protective effects of freeze-dried mandacaru fruit on the most promising LAB isolate during lyophilization and refrigeration storage. Initially, 212 colonies were isolated from mandacaru fruit, and 34 were preliminarily identified as LAB. Thirteen isolates identified by 16S-rRNA sequencing as Pediococcus pentosaceus were negative for DNase, gelatinase, hemolytic, and biogenic amine production. The selected isolates showed proteolytic activity, diacetyl and exopolysaccharide production, and good tolerance to different NaCl concentrations while having low cellular hydrophobicity and antagonistic activity against pathogens. The survival of isolates sharply decreased after 3 h of exposure to pH 2 and had a good tolerance to 1 % bile salt. A principal component analysis selected P. pentosaceus 57 as the most promising isolate based on the examined technological and probiotic-related physiological properties. This isolate was lyophilized with mandacaru fruit and stored under refrigeration for 90 days. P. pentosaceus 57 lyophilized with mandacaru fruit had high viable cell counts (9.69 ± 0.03 log CFU/mL) and >50 % of physiologically active cells at 90 days of refrigeration storage. The results indicate that mandacaru fruit is a source of P. pentosaceus with aptitudes to be explored as potential probiotic and technological characteristics of interest for the food industry, besides being a good candidate for use in lyophilization processes and refrigeration storage of LAB due to its cryoprotective effects.


Assuntos
Liofilização , Frutas , Pediococcus pentosaceus , Probióticos , Refrigeração , Pediococcus pentosaceus/metabolismo , Frutas/microbiologia , Lactobacillales/metabolismo , Lactobacillales/genética , Lactobacillales/fisiologia , Armazenamento de Alimentos , Microbiologia de Alimentos , Conservação de Alimentos/métodos
11.
Microorganisms ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674604

RESUMO

Multi-strain Limosilactobacillus (L.) fermentum is a potential probiotic with reported immunomodulatory properties. This study aimed to evaluate the composition, richness, and diversity of the gut microbiota in male and female rats after treatment with a multi-strain of L. fermentum at different doses. Thirty rats (fifteen male and fifteen female) were allocated into a control group (CTL), a group receiving L. fermentum at a dose of 108 CFU (Lf-108), and a group receiving L. fermentum at a dose of 1010 CFU (Lf-1010) for 13 weeks. Gut microbiota and serum cytokine levels were evaluated after L. fermentum treatment. Male CTL rats had a lower relative abundance of Bifidobacteriaceae and Prevotella and a lower alpha diversity than their female CTL counterparts (p < 0.05). In addition, male CTL rats had a higher Firmicutes/Bacteroidetes (F/B) ratio than female CTL rats (p < 0.05). In female rats, the administration of L. fermentum at 108 CFU decreased the relative abundance of Bifidobacteriaceae and Anaerobiospirillum and increased Lactobacillus (p < 0.05). In male rats, the administration of L. fermentum at 1010 CFU decreased the F/B ratio and increased Lachnospiraceae and the diversity of the gut microbiota (p < 0.05). The relative abundance of Lachnospiraceae and the alpha-diversity of gut microbiota were negatively correlated with serum levels of IL1ß (r = -0.44) and TNFα (r = -0.39), respectively. This study identified important changes in gut microbiota between male and female rats and showed that a lower dose of L. fermentum may have more beneficial effects on gut microbiota in females, while a higher dose may result in more beneficial effects on gut microbiota in male rats.

12.
Crit Rev Food Sci Nutr ; : 1-14, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420934

RESUMO

Spirulina (S.) platensis is a blue-green algae with reported nutritional and health-promoting properties, such as immunomodulating, antioxidant, cholesterol-lowering properties, and beneficial effects on inflammatory diseases. Spirulina platensis can improve the function and composition of the gut microbiota and exert systemic beneficial effects. Gut dysbiosis is characterized by an imbalance in the composition and function of gut microbiota and is associated with several diseases. Some dietary bioactive compounds can restore the composition, diversity, and function of the gut microbiota and improve health-related parameters. This review proposes to gather relevant information on the effects of S. platensis supplementation on the modulation of the function and composition of gut microbiota and local and systemic measures related to gut health, such as inflammation, oxidative stress, and glucose and lipid metabolism. The body of evidence conducted with animals and clinical studies shows that S. platensis supplementation increased gut microbiota diversity and improved gut microbiota composition, as reported by a decrease in the Firmicutes/Bacteroides ratio, increase in the relative abundance of Prevotella and Lactobacillaceae, increase in short-chain fatty acid production and decrease of gut permeability. Improvements in gut microbiota have been associated with host health benefits such as anti-obesity, anti-diabetic, anti-hypertensive, anti-lipemic, anti-inflammatory, and antioxidant effects.

13.
Probiotics Antimicrob Proteins ; 16(4): 1483-1498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38393628

RESUMO

Fruits and their processing by-products are sources of potentially probiotic strains. Limosilactobacillus (L.) fermentum strains isolated from fruit processing by-products have shown probiotic-related properties. This review presents and discusses the results of the available studies that evaluated the probiotic properties of L. fermentum in promoting host health benefits, their application by the food industry, and the development of biotherapeutics. The results showed that administration of L. fermentum for 4 to 8 weeks promoted host health benefits in rats, including the modulation of gut microbiota, improvement of metabolic parameters, and antihypertensive, antioxidant, and anti-inflammatory effects. The results also showed the relevance of L. fermentum strains for application in the food industry and for the formulation of novel biotherapeutics, especially nutraceuticals. This review provides evidence that L. fermentum strains isolated from fruit processing by-products have great potential for promoting host health and indicate the need for a translational approach to confirm their effects in humans using randomized, double-blind, placebo-controlled trials.


Assuntos
Limosilactobacillus fermentum , Probióticos , Limosilactobacillus fermentum/fisiologia , Humanos , Animais , Microbioma Gastrointestinal , Frutas/microbiologia , Ratos
14.
J Pediatr (Rio J) ; 100(1): 74-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37597533

RESUMO

OBJECTIVE: Evaluate autonomic function and low-grade inflammation and characterize the correlation between these variables in schoolchildren with obesity living in the Brazilian northeast region. METHODS: 84 children with obesity and 41 with normal weight were included in this cross-sectional study. Anthropometry, body composition, blood pressure (BP), inflammatory biomarkers, and heart rate variability (HRV) indexes were analyzed in children aged 7 to 11 years. RESULTS: children with obesity had increased systolic (p = 0.0017) and diastolic (p = 0.0131) BP and heart rate (p = 0.0022). The children with obesity displayed significantly lower SDNN, RMSSD, NN50, HF (ms), HF (nu), SD1, SD2, and higher LF (ms), LF (nu), LF/HF, SD1/SD2, DFA-α1, and DFA-α2, compared to normal weight. A lower and higher capacity for producing IL-10 (p = 0.039) and IL-2 (p = 0.009), respectively, were found in children with obesity compared to children with normal weight. Although IL-2, IL-4 and IL17A did not correlate with HRV parameters, IL-6 was positively correlated with SDNN, LF (ms) and SD2, TNF-α was positively correlated with LF/HF and SD1/SD2 ratio, and IFN-γ was positively correlated with SDNN, RMMSSD, NN50, LF (ms), HF (ms), SD1, and SD2. CONCLUSIONS: The findings suggest that children with obesity have impaired autonomic function and systemic low-grade inflammation compared to children within the normal weight range, the inflammatory biomarkers were correlated with HRV parameters in schoolchildren living in the northeastern region of Brazil.


Assuntos
Interleucina-2 , Obesidade , Criança , Humanos , Brasil/epidemiologia , Estudos Transversais , Inflamação , Frequência Cardíaca/fisiologia , Biomarcadores
15.
Probiotics Antimicrob Proteins ; 16(1): 308-319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36708461

RESUMO

This study evaluated the effects of simulated gastrointestinal conditions (SGIC) on combined potentially probiotic Limosilactobacillus fermentum 296 (~ 10 log CFU/mL), quercetin (QUE, 160 mg), and/or resveratrol (RES, 150 mg) as the bioactive components of novel nutraceuticals. Four different nutraceuticals were evaluated during exposure to SGIC and analyzed the plate counts and physiological status of L. fermentum 296, contents and bioaccessibility of QUE and RES, and antioxidant capacity. Nutraceuticals with QUE and RES had the highest plate counts (4.94 ± 0.32 log CFU/mL) and sizes of live cell subpopulations (28.40 ± 0.28%) of L. fermentum 296 after SGIC exposure. An index of injured cells (Gmean index, arbitrary unit defined as above 0.5) indicated that part of L. fermentum 296 cells could be entered the viable but nonculturable state when the nutraceuticals were exposed to gastric and intestinal conditions while maintaining vitality. The nutraceuticals maintained high contents (QUE ~ 29.17 ± 0.62 and RES ~ 23.05 mg/100 g) and bioaccessibility (QUE ~ 41.0 ± 0.09% and RES ~ 67.4 ± 0.17%) of QUE and RES, as well as high antioxidant capacity (ABTS assay ~ 88.18 ± 1.16% and DPPH assay 75.54 ± 0.65%) during SGIC exposure, which could be linked to the protective effects on L. fermentum 296 cells. The developed nutraceuticals could cross along the gastrointestinal tract with high concentrations of functioning potentially probiotic cells and bioavailable phenolic compounds to exert their beneficial impacts on consumer health, being an innovative strategy for the co-ingestion of these bioactive components.


Assuntos
Gastroenteropatias , Limosilactobacillus fermentum , Probióticos , Humanos , Quercetina , Resveratrol , Antioxidantes , Probióticos/farmacologia
16.
Food Res Int ; 174(Pt 2): 113658, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981375

RESUMO

This study investigated the potential impacts of the flour from Cereus jamacaru cactus cladodes (CJF), a cactus native to the Brazilian Caatinga biome, on the growth and metabolism of different potentially probiotic strains, as well as on the abundance of selected intestinal bacterial populations and microbial metabolic activity during in vitro colonic fermentation with a pooled human fecal inoculum. Cultivation of the probiotics in a medium with C. jamacaru cladodes flour (20 g/L) resulted in viable cell counts of up to 9.8 log CFU/mL, positive prebiotic activity scores (0.73-0.91), decreased pH and sugar contents, and increased lactic, acetic, and propionic acid production over time, indicating enhanced probiotic growth and metabolic activity. CJF overall increased the relative abundance of Lactobacillus spp./Enterococcus spp. (2.12-3.29%) and Bifidobacterium spp. (4.08-4.32%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (8.35-6.81%), Clostridium histolyticum (6.91-3.59%), and Eubacterium rectale/Clostridium coccoides (7.70-3.95%) during 48 h of an in vitro colonic fermentation using a pooled human fecal inoculum. CJF stimulated the microbial metabolic activity, with decreased pH, sugar consumption, lactic and short-chain fatty acid production, alterations in overall metabolic profiling and phenolic compound contents, and maintenance of high antioxidant capacity during colonic fermentation. These results show that CJF stimulated the growth and metabolic activity of distinct potential probiotics, increased the relative abundance of beneficial intestinal bacterial groups, and stimulated microbial metabolism during in vitro colonic fermentation. Further studies using advanced molecular technologies and in vivo experimental models could forward the investigation of the potential prebiotic properties of CJF.


Assuntos
Cactaceae , Microbioma Gastrointestinal , Humanos , Farinha , Fermentação , Metabolômica
17.
Artigo em Inglês | MEDLINE | ID: mdl-37792211

RESUMO

This study formulated sweet potato chips with powdered potentially probiotic Levilactobacillus brevis (SPLB) and Lactiplantibacillus plantarum (SPLP) and evaluated their impacts on human intestinal microbiota during 48 h of in vitro colonic fermentation. L. brevis and L. plantarum kept high viable cell counts (> 6 log CFU/g) on sweet potato chips after freeze-drying and during 60 days of storage. SPLB and SPLP had satisfactory quality parameters during 60 days of storage. SPLB and SPLP increased the relative abundance of Lactobacillus ssp./Enterococcus spp. (3.84-10.22%) and Bifidobacterium spp. (3.25-12.45%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (8.56-2.16%), Clostridium histolyticum (8.23-2.33%), and Eubacterium rectale/Clostridium coccoides (8.07-1.33%) during 48 h of in vitro colonic fermentation. SPLB and SPLP achieved high positive prebiotic indexes (> 8.24), decreased pH values and sugar contents, and increased lactic acid and short-chain fatty acid production, proving selective stimulatory effects on beneficial bacterial groups forming the intestinal microbiota. The results showed that SPLB and SPLP have good stability and high viable cell counts of L. brevis and L. plantarum when stored under room temperature and caused positive impacts on human intestinal microbiota, making them potentially probiotic non-dairy snack options.

18.
Foods ; 12(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37761200

RESUMO

Non-communicable chronic diseases (NCDs) are the most widespread cause of mortality worldwide. Intestinal microbiota balance can be altered by changes in the abundance and/or diversity of intestinal microbiota, indicating a role of intestinal microbiota in NCD development. This review discusses the findings of in vitro studies, pre-clinical studies and clinical trials on the effects of Brazilian native fruits, their by-products, as well as their bioactive compounds on human intestinal microbiota and NCD. The major bioactive compounds in Brazilian native fruits and their by-products, and the impacts of their administration on outcomes linked to intestinal microbiota modulation are discussed. Mechanisms of intestinal microbiota affecting NCD could be linked to the modulation of absorption and energy balance, immune and endocrine systems, and inflammatory response. Brazilian native fruits, such as acerola, açaí, baru, buriti, guava, jabuticaba, juçara, and passion fruit, have several bioactive compounds, soluble and insoluble fibers, and a variety of phenolic compounds, which are capable of changing these key mechanisms. Brazilian native fruits and their by-products can help to promote positive intestinal and systemic health benefits by driving alterations in the composition of the human intestinal microbiota, and increasing the production of distinct short-chain fatty acids and phenolic metabolites, thereby enhancing intestinal integrity and homeostasis. Evidence from available literature shows that the modulatory impacts of Brazilian native fruits and their by-products on the composition and metabolic activity of the intestinal microbiota could improve several clinical repercussions associated with NCD, reinforcing the influence of intestinal microbiota in extra-intestinal outcomes.

19.
Food Funct ; 14(19): 8964-8974, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37724612

RESUMO

This study evaluated the impact of the Milnutri Profutura® (MNP) dairy infant formula on the gut microbiota of early childhood children (three to five years) with Autistic Spectrum Disorder (ASD) using static fermentation (time zero, 24, and 48 h) and the Simulator of the Human Intestinal Microbiol Ecosystem (SHIME®) (time zero, 72 h, and 7 days). The relative abundance of selected intestinal bacterial groups, pH values, organic acids, and sugars were verified at time zero, 24, and 48 h using flow cytometry and measurements. In addition, the diversity and changes in the gut microbiota, and the amounts of acetic, butyric, and propionic acids and ammonium ions (NH4+) in fermentation using the SHIME® were measured at time zero, 72 h, and 7 days. MNP increased Lactobacillus/Enterococcus and Bifidobacterium populations and decreased Bacteroides/Prevotella, Clostridium histolyticum and Eubacterium rectale/Clostridium coccoides populations (p < 0.05) at 24 and 48 h of static fermentation, showing a positive prebiotic activity score (65.18 ± 0.07). The pH, fructose and glucose decreased, while lactic, butyric, and propionic acids increased (p < 0.05) at 48 h of static fermentation. MNP increased (p < 0.05) the Firmicutes phylum during the fermentation in SHIME®. MNP decreased the diversity at 72 h of fermentation, mostly by the increase (p < 0.05) in the Lactobacillus genus. Microbial groups considered harmful such as Lachnospiraceae, Negativicoccus, and Lachnoclostridium were inhibited after administration with MNP. Propionic and butyric acids increased at 72 h and NH4+ decreased (p < 0.05) at the end of fermentation with MNP. The results indicate MNP as an infant formula which may benefit the gut microbiota of children with ASD.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Fórmulas Infantis , Criança , Pré-Escolar , Humanos , Lactente , Ecossistema , Fezes/microbiologia , Fermentação , Lactobacillus , Propionatos
20.
Artigo em Inglês | MEDLINE | ID: mdl-37561381

RESUMO

This study evaluated the impacts of novel nutraceuticals formulated with freeze-dried jabuticaba peel (FJP) and three potentially probiotic Limosilactobacillus fermentum strains on the abundance of bacterial groups forming the human intestinal microbiota, metabolite production, and antioxidant capacity during in vitro colonic fermentation. The nutraceuticals had high viable counts of L. fermentum after freeze-drying (≥ 9.57 ± 0.09 log CFU/g). The nutraceuticals increased the abundance of Lactobacillus ssp./Enterococcus spp. (2.46-3.94%), Bifidobacterium spp. (2.28-3.02%), and Ruminococcus albus/R. flavefaciens (0.63-4.03%), while decreasing the abundance of Bacteroides spp./Prevotella spp. (3.91-2.02%), Clostridium histolyticum (1.69-0.40%), and Eubacterium rectale/C. coccoides (3.32-1.08%), which were linked to positive prebiotic indices (> 1.75). The nutraceuticals reduced the pH and increased the sugar consumption, short-chain fatty acid production, phenolic acid content, and antioxidant capacity, besides altering the metabolic profile during colonic fermentation. The combination of FJP and probiotic L. fermentum is a promising strategy to produce nutraceuticals targeting intestinal microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA