Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37688272

RESUMO

The development of packaging films made from renewable raw materials, which cause low environmental impact, has gained attention due to their attractive properties, which have become an exciting option for synthetic films. In this study, cellulose micro/nanofibrils (MFC/NFC) films were produced with forest residues from the Amazon region and evaluated for their potential to generate alternative packaging to traditional plastic packaging. The MFC/NFC were obtained by mechanical fibrillation from fibers of açaí seeds (Euterpe oleracea), titica vine (Heteropsis flexuosa), and commercial pulps of Eucalyptus sp. for comparison. The fibrillation of the titica vine culminated in higher energy expenditure on raw materials. The açaí films showed a higher tensile strength (97.2 MPa) compared to the titica films (46.2 MPa), which also showed a higher permeability rate (637.3 g day-1 m-2). Films of all raw materials scored the highest in the grease resistance test (n° 12). The films produced in the study showed potential for use in packaging for light and low moisture products due to their adequate physical, mechanical, and barrier characteristics. New types of pre-treatments or fibrillation methods ecologically correct and viable for reducing energy consumption must be developed, mainly for a greater success of titica vine fibrillation at the nanoscale.

2.
Int J Pharm ; 642: 123147, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37336298

RESUMO

Diverse drugs have been used for the management of inflammation disorders and pain. However, they present many side effects and stimulate the search for new pharmacotherapeutic alternatives. Plant-derived products such as copaiba essential oil (CO) offer beneficial pharmacological effects. On the other hand, essential oil's low water solubility and physical instability hinder its in vivo application. Thus, poly-ɛ-caprolactone (PCL)-based nanocarriers have been used to increase their stability and efficacy. This work aimed to encapsulate CO in PCL nanocapsules and evaluate their effect on inflammation models and pain. The polymeric nanocapsules loading CO (CO-NC) were prepared by nanoprecipitation technique, characterized, and analyzed for their anti-inflammatory effect in vitro and in vivo. The results showed that CO-NC presented a spherical shape, 229.3 ± 1.5 nm diameter, and a negative zeta potential (approximately -23 mV). CO and CO-NC presented anti-inflammatory and antioxidant effects by LPS-activated macrophages (J774 cells). In addition, CO-NC significantly reduced TNF-α secretion (3-fold) compared to CO. In vivo, pre-treatment with CO or CO-NC (50, 100, 200 mg/kg, intraperitoneal; i.p) reduced the mechanical allodynia, paw edema, and pro-inflammatory cytokines induced by intraplantar (i.pl) injection of carrageenan in mice. Specifically, CO-NC (200 mg/kg; i.p.) reduced the production of TNF-α similar to the control group. Our results support using polymeric nanocapsules for CO delivery in inflammatory conditions.


Assuntos
Nanocápsulas , Óleos Voláteis , Camundongos , Animais , Óleos Voláteis/farmacologia , Fator de Necrose Tumoral alfa , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Anti-Inflamatórios , Polímeros/uso terapêutico
3.
Environ Sci Pollut Res Int ; 29(44): 66422-66437, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35501446

RESUMO

The applicability of cellulose nanofibrils (CNFs) has received attention due to their attractive properties. This study proposes the functionalization of açai CNFs with copaiba oil and vegetal tannins to produce films with potential for packaging. Bio-based films were evaluated by vapor permeability, colorimetry, and mechanical strength. CNFs were produced by mechanical fibrillation, from suspensions of bleached açai fibers and commercial eucalipytus pulp. Moreover, copaiba oil and vegetal tannin were added to the CNFs to produce films/nanopapers by casting from both suspensions with concentrations of 1% (based on CNF dry mass). The bulk densities of the eucalyptus CNF films were higher (1.126-1.171 g cm-3) compared to the açai CNF ones. Films from eucalyptus and açai pulps containing copaiba oil and tannins presented higher Tonset and Tmax, respectively (312 and 370 °C). Films with açaí CNFs functionalized with copaiba oil and tannin showed the lowest permeability value (370 g day-1 m-2). Films produced with eucalyptus pulp, and eucalyptus pulp functionalized with copaiba oil highlighted by superior mechanical strength, achieving 133.8 and 121.4 MPa, respectively. The evaluation of colorimetry showed a greater tendency to yellowing for açai films, especially those functionalized with vegetal tannins. Besides the low cost, functionalized vegetal-based nanomaterials could have attractive properties, with potential for application as some kind of packaging, for transporting basic products, such as breads, flours, or products with low moisture content, enabling efficient utilization of forest wastes.


Assuntos
Eucalyptus , Nanofibras , Óleos Voláteis , Celulose , Florestas , Suspensões , Taninos
4.
Int J Microbiol ; 2021: 9959550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447438

RESUMO

The objective of this research was to perform screening of biosurfactant-producing bacteria from Amapaense Amazon soils. Floodplain- and upland-forest soils of three municipalities of the Amapá state were isolated and identified. The isolates were cultured in nutrient broth with olive oil, and their extracts were evaluated according to drop collapse, oil dispersion, emulsification, and surface tension tests. From three hundred and eighteen isolates, the 43 bacteria were selected and identified by 16S rDNA gene sequencing, indicating the presence of three different genera, Serratia, Paenibacillus, and Citrobacter. The extracellular biosurfactant production pointed out the 15 most efficient bacteria that presented high emulsification capacity (E 24 > 48%) and stability (less than 10% of drop after 72 h) and great potential to reduce the surface tension (varying from 49.40 to 34.50 mN·m-1). Cluster analysis classified genetically related isolates in different groups, which can be connected to differences in the amount or the sort of biosurfactants. Isolates from Serratia genus presented better emulsification capacity and produced a more significant surface tension drop, indicating a promising potential for biotechnological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA