Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene ; 906: 148236, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316264

RESUMO

This systematic review and meta-analysis aimed to verify the association between single-nucleotide polymorphisms (SNPs) in vitamin D-related genes and the severity or mortality of coronavirus disease 19 (COVID-19). We systematically searched PubMed, BVS/Bireme, Scopus, Embase, and Web of Science for relevant studies published until November 24, 2023. Twelve studies were included. Thirty-one SNPs related to four genes were studied (VDR, 13 SNPs; GC, 6 SNPs; DHCR7/NADSYN1, 6 SNPs; CYP2R1, 6 SNPs). Eight SNPs were examined in two or more studies (VDR rs731236, rs2228570, rs1544410, rs7975232, rs739837, rs757343, rs11568820, and rs4516035). Meta-analysis showed a significant association between the VDR rs1544410 Bb + bb genotype and b allele and an increased odds of developing severe/critical COVID-19 (Bb + bb vs. BB = 2 studies, OR = 1.73, 95% confidence interval (CI): 1.16-2.57, P = 0.007, I2 = 0%; b allele vs. B allele = 2 studies, OR = 1.31, 95% CI: 1.03-1.67; P = 0.03; I2 = 0%). Regarding the mortality rate, VDR rs731236 TT-genotype, TT + Tt genotype, and T allele; VDR rs1544410 bb-genotype, Bb + bb genotype, and b allele; VDR rs7975232 AA-genotype, AA + Aa genotype, and A allele; and VDR rs2228570 ff-genotype, Ff + ff genotype, and f allele were associated with increased odds of death due to COVID-19. In conclusion, the present study suggests that SNPs rs1544410 may serve as a predictive biomarker for COVID-19 severity and rs731236, rs1544410, rs7975232, and rs2228570 as predictive biomarkers for COVID-19 mortality. More well-designed studies involving a larger number of COVID-19 patients are required to validate and replicate these findings.


Assuntos
COVID-19 , Polimorfismo de Nucleotídeo Único , Humanos , Predisposição Genética para Doença , Receptores de Calcitriol/genética , COVID-19/genética , Genótipo , Vitamina D/genética
2.
Purinergic Signal ; 16(2): 241-249, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32458299

RESUMO

In corpus cavernosum (CC), guanosine triphosphate (GTP) is converted into cyclic guanosine monophosphate (cGMP) to induce erection. The action of cGMP is terminated by phosphodiesterases and efflux transporters, which pump cGMP out of the cell. The nucleotides, GTP, and cGMP were detected in the extracellular space, and their hydrolysis lead to the formation of intermediate products, among them guanosine. Therefore, our study aims to pharmacologically characterize the effect of guanosine in isolated CC from mice. The penis was isolated and functional and biochemical analyses were carried out. The guanine-based nucleotides GTP, guanosine diphosphate, guanosine monophosphate, and cGMP relaxed mice corpus cavernosum, but the relaxation (90.7 ± 12.5%) induced by guanosine (0.000001-1 mM) was greater than that of the nucleotides (~ 45%, P < 0.05). Guanosine-induced relaxation was not altered in the presence of adenosine type 2A and 2B receptor antagonists. No augment was observed in the intracellular levels of cyclic adenosine monophosphate in tissues stimulated with guanosine. Inhibitors of nitric oxide synthase (L-NAME, 100 µM) and soluble guanylate cyclase (ODQ, 10 µM) produced a significant reduction in guanosine-induced relaxation in all concentrations studied, while in the presence of tadalafil (300 nM), a significant increase was observed. Pre-incubation of guanosine (100 µM) produced a 6.6-leftward shift in tadalafil-induced relaxation. The intracellular levels of cGMP were greater when CC was stimulated with guanosine. Inhibitors of ecto-nucleotidases and xanthine oxidase did not interfere in the response induced by guanosine. In conclusion, our study shows that guanosine relaxes mice CC and opens the possibility to test its role in models of erectile dysfunction.


Assuntos
GMP Cíclico/metabolismo , Guanosina/farmacologia , Nucleosídeos/metabolismo , Animais , AMP Cíclico/metabolismo , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/metabolismo , Guanosina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , Nucleosídeos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA