Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 721, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273137

RESUMO

BACKGROUND: Homalodisca vitripennis Germar, the glassy-winged sharpshooter, is an invasive insect in California and a critical threat to agriculture through its transmission of the plant pathogen, Xylella fastidiosa. Quarantine, broad-spectrum insecticides, and biological control have been used for population management of H. vitripennis since its invasion and subsequent proliferation throughout California. Recently wide-spread neonicotinoid resistance has been detected in populations of H. vitripennis in the southern portions of California's Central Valley. In order to better understand potential mechanisms of H. vitripennis neonicotinoid resistance, we performed RNA sequencing on wild-caught insecticide-resistant and relatively susceptible sharpshooters to profile their transcriptome and population structure. RESULTS: We identified 81 differentially expressed genes with higher expression in resistant individuals. The significant largest differentially expressed candidate gene linked to resistance status was a cytochrome P450 gene with similarity to CYP6A9. Furthermore, we observed an over-enrichment of GO terms representing functions supportive of roles in resistance mechanisms (cytochrome P450s, M13 peptidases, and cuticle structural proteins). Finally, we saw no evidence of broad-scale population structure, perhaps due to H. vitripennis' relatively recent introduction to California or due to the relatively small geographic scale investigated here. CONCLUSIONS: In this work, we characterized the transcriptome of insecticide-resistant and susceptible H. vitripennis and identified candidate genes that may be involved in resistance mechanisms for this species. Future work should seek to build on the transcriptome profiling performed here to confirm the role of the identified genes, particularly the cytochrome P450, in resistance in H. vitripennis. We hope this work helps aid future population management strategies for this and other species with growing insecticide resistance.


Assuntos
Hemípteros , Inseticidas , Animais , Citocromos/genética , Citocromos/metabolismo , Hemípteros/genética , Hemípteros/metabolismo , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Neonicotinoides , Peptídeo Hidrolases/genética , Transcriptoma
2.
Sci Rep ; 12(1): 6428, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440677

RESUMO

CRISPR/Cas9 technology enables the extension of genetic techniques into insect pests previously refractory to genetic analysis. We report the establishment of genetic analysis in the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, which is a significant leafhopper pest of agriculture in California. We use a novel and simple approach of embryo microinjection in situ on the host plant and obtain high frequency mutagenesis, in excess of 55%, of the cinnabar and white eye pigmentation loci. Through pair matings, we obtained 100% transmission of w and cn alleles to the G3 generation and also established that both genes are located on autosomes. Our analysis of wing phenotype revealed an unexpected discovery of the participation of pteridine pigments in wing and wing-vein coloration, indicating a role for these pigments beyond eye color. We used amplicon sequencing to examine the extent of off-target mutagenesis in adults arising from injected eggs, which was found to be negligible or non-existent. Our data show that GWSS can be easily developed as a genetic model system for the Hemiptera, enabling the study of traits that contribute to the success of invasive pests and vectors of plant pathogens. This will facilitate novel genetic control strategies.


Assuntos
Sistemas CRISPR-Cas , Hemípteros , Animais , Sistemas CRISPR-Cas/genética , Hemípteros/genética , Pigmentação/genética
3.
Sci Rep ; 10(1): 20865, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257732

RESUMO

Huanglongbing (HLB), caused mainly by 'Candidatus Liberibacter asiaticus' (CLas), is the most devastating citrus disease because all commercial species are susceptible. HLB tolerance has been observed in Poncirus trifoliata and their hybrids. A wide-ranging transcriptomic analysis using contrasting genotypes regarding HLB severity was performed to identify the genetic mechanism associated with tolerance to HLB. The genotypes included Citrus sinensis, Citrus sunki, Poncirus trifoliata and three distinct groups of hybrids obtained from crosses between C. sunki and P. trifoliata. According to bacterial titer and symptomatology studies, the hybrids were clustered as susceptible, tolerant and resistant to HLB. In P. trifoliata and resistant hybrids, genes related to specific pathways were differentially expressed, in contrast to C. sinensis, C. sunki and susceptible hybrids, where several pathways were reprogrammed in response to CLas. Notably, a genetic tolerance mechanism was associated with the downregulation of gibberellin (GA) synthesis and the induction of cell wall strengthening. These defense mechanisms were triggered by a class of receptor-related genes and the induction of WRKY transcription factors. These results led us to build a hypothetical model to understand the genetic mechanisms involved in HLB tolerance that can be used as target guidance to develop citrus varieties or rootstocks with potential resistance to HLB.


Assuntos
Citrus sinensis/genética , Doenças das Plantas/genética , Poncirus/genética , Transcriptoma/genética , Citrus sinensis/microbiologia , Suscetibilidade a Doenças/microbiologia , Regulação para Baixo/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Liberibacter/patogenicidade , Doenças das Plantas/microbiologia , Poncirus/microbiologia , Fatores de Transcrição/genética
4.
Insects ; 11(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722346

RESUMO

'Candidatus Liberibacter asiaticus' (CLas) is a major causal agent of citrus Huanglongbing (HLB), which is transmitted by Asian citrus psyllid (ACP), Diaphorina citri, causing severe losses in various regions of the world. Vector efficiency is higher when acquisition occurs by ACP immature stages and over longer feeding periods. In this context, our goal was to evaluate the progression of CLas population and infection rate over four ACP generations that continuously developed on infected citrus plants. We showed that the frequency of CLas-positive adult samples increased from 42% in the parental generation to 100% in the fourth generation developing on CLas-infected citrus. The bacterial population in the vector also increased over generations. This information reinforces the importance of HLB management strategies, such as vector control and eradication of diseased citrus trees, to avoid the development of CLas-infected ACP generations with higher bacterial loads and, likely, a higher probability of spreading the pathogen in citrus orchards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA