Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 36(8): 109620, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433052

RESUMO

Brain function relies almost solely on glucose as an energy substrate. The main model of brain metabolism proposes that glucose is taken up and converted into lactate by astrocytes to fuel the energy-demanding neuronal activity underlying plasticity and memory. Whether direct neuronal glucose uptake is required for memory formation remains elusive. We uncover, in Drosophila, a mechanism of glucose shuttling to neurons from cortex glia, an exclusively perisomatic glial subtype, upon formation of olfactory long-term memory (LTM). In vivo imaging reveals that, downstream of cholinergic activation of cortex glia, autocrine insulin signaling increases glucose concentration in glia. Glucose is then transferred from glia to the neuronal somata in the olfactory memory center to fuel the pentose phosphate pathway and allow LTM formation. In contrast, our results indicate that the increase in neuronal glucose metabolism, although crucial for LTM formation, is not routed to glycolysis.


Assuntos
Memória de Longo Prazo/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Via de Pentose Fosfato/fisiologia , Animais , Astrócitos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Glucose/metabolismo
2.
Nat Commun ; 8: 15510, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28580949

RESUMO

Efficient energy use has constrained the evolution of nervous systems. However, it is unresolved whether energy metabolism may resultantly regulate major brain functions. Our observation that Drosophila flies double their sucrose intake at an early stage of long-term memory formation initiated the investigation of how energy metabolism intervenes in this process. Cellular-resolution imaging of energy metabolism reveals a concurrent elevation of energy consumption in neurons of the mushroom body, the fly's major memory centre. Strikingly, upregulation of mushroom body energy flux is both necessary and sufficient to drive long-term memory formation. This effect is triggered by a specific pair of dopaminergic neurons afferent to the mushroom bodies, via the D5-like DAMB dopamine receptor. Hence, dopamine signalling mediates an energy switch in the mushroom body that controls long-term memory encoding. Our data thus point to an instructional role for energy flux in the execution of demanding higher brain functions.


Assuntos
Drosophila melanogaster/metabolismo , Memória de Longo Prazo/fisiologia , Memória/fisiologia , Corpos Pedunculados/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Condicionamento Clássico/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/metabolismo , Metabolismo Energético , Feminino , Genótipo , Masculino , Neurônios/metabolismo , Receptores Dopaminérgicos/metabolismo , Olfato/fisiologia , Sacarose/química , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA