Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(4): 2045-2065, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281216

RESUMO

The genome-organizing protein p6 of Bacillus subtilis bacteriophage φ29 plays an essential role in viral development by activating the initiation of DNA replication and participating in the early-to-late transcriptional switch. These activities require the formation of a nucleoprotein complex in which the DNA adopts a right-handed superhelix wrapping around a multimeric p6 scaffold, restraining positive supercoiling and compacting the viral genome. Due to the absence of homologous structures, prior attempts to unveil p6's structural architecture failed. Here, we employed AlphaFold2 to engineer rational p6 constructs yielding crystals for three-dimensional structure determination. Our findings reveal a novel fold adopted by p6 that sheds light on its self-association mechanism and its interaction with DNA. By means of protein-DNA docking and molecular dynamic simulations, we have generated a comprehensive structural model for the nucleoprotein complex that consistently aligns with its established biochemical and thermodynamic parameters. Besides, through analytical ultracentrifugation, we have confirmed the hydrodynamic properties of the nucleocomplex, further validating in solution our proposed model. Importantly, the disclosed structure not only provides a highly accurate explanation for previously experimental data accumulated over decades, but also enhances our holistic understanding of the structural and functional attributes of protein p6 during φ29 infection.


Assuntos
Fagos Bacilares , Bacillus subtilis , Fagos Bacilares/genética , Fagos Bacilares/química , Bacillus subtilis/virologia , Replicação do DNA , DNA Viral/genética , Nucleoproteínas/metabolismo , Proteínas Virais/metabolismo
2.
Nucleic Acids Res ; 51(3): 1189-1207, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36715333

RESUMO

Bacterial genomes contain an abundance of transposable insertion sequence (IS) elements that are essential for genome evolution and fitness. Among them, IS629 is present in most strains of enterohemorrhagic Escherichia coli O157 and accounts for many polymorphisms associated with gene inactivation and/or genomic deletions. The excision of IS629 from the genome is promoted by IS-excision enhancer (IEE) protein. Despite IEE has been identified in the most pathogenic serotypes of E. coli, its biochemical features that could explain its role in IS excision are not yet understood. We show that IEE is present in >30% of all available E. coli genome assemblies, and is highly conserved and very abundant within enterohemorrhagic, enteropathogenic and enterotoxigenic genomes. In vitro analysis of the recombinant protein from E. coli O157:H7 revealed the presence of a Mn2+-dependent error-prone DNA polymerase activity in its N-terminal archaeo-eukaryotic primase (AEP) domain able to promote dislocations of the primer and template strands. Importantly, IEE could efficiently perform in vitro an end-joining reaction of 3'-single-strand DNA overhangs with ≥4 bp of homology requiring both the N-terminal AEP and C-terminal helicase domains. The proposed role for IEE in the novel IS excision mechanism is discussed.


Assuntos
Escherichia coli Êntero-Hemorrágica , Escherichia coli O157 , Proteínas de Escherichia coli , Elementos de DNA Transponíveis , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli O157/genética , Sequências Reguladoras de Ácido Nucleico , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo
3.
Biomolecules ; 10(2)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019147

RESUMO

The catalytic active site of the Polymerization Domain (PolDom) of bacterial Ligase D is designed to promote realignments of the primer and template strands and extend mispaired 3' ends. These features, together with the preferred use of ribonucleotides (NTPs) over deoxynucleotides (dNTPs), allow PolDom to perform efficient double strand break repair by nonhomologous end joining when only a copy of the chromosome is present and the intracellular pool of dNTPs is depleted. Here, we evaluate (i) the role of conserved histidine and serine/threonine residues in NTP insertion, and (ii) the importance in the polymerization reaction of a conserved lysine residue that interacts with the templating nucleotide. To that extent, we have analyzed the biochemical properties of variants at the corresponding His651, Ser768, and Lys606 of Pseudomonas aeruginosa PolDom (Pa-PolDom). The results show that preferential insertion of NMPs is principally due to the histidine that also contributes to the plasticity of the active site to misinsert nucleotides. Additionally, Pa-PolDom Lys606 stabilizes primer dislocations. Finally, we show that the active site of PolDom allows the efficient use of 7,8-dihydro-8-oxo-riboguanosine triphosphate (8oxoGTP) as substrate, a major nucleotide lesion that results from oxidative stress, inserting with the same efficiency both the anti and syn conformations of 8oxoGMP.


Assuntos
Proteínas de Bactérias/química , DNA Polimerase Dirigida por DNA/química , Ligases/metabolismo , Ribonucleotídeos/química , Sequência de Aminoácidos , Domínio Catalítico , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Guanosina Trifosfato/química , Histidina/química , Cinética , Lisina/química , Mutagênese Sítio-Dirigida , Mutação , Nucleotídeos/química , Ligação Proteica , Conformação Proteica , Pseudomonas aeruginosa/enzimologia , Treonina/química
4.
Biomolecules ; 9(11)2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653090

RESUMO

Bacteriophage Phi29 DNA polymerase belongs to the protein-primed subgroup of family B DNA polymerases that use a terminal protein (TP) as a primer to initiate genome replication. The resolution of the crystallographic structure showed that it consists of an N-terminal domain with the exonuclease activity and a C-terminal polymerization domain. It also has two subdomains specific of the protein-primed DNA polymerases; the TP Regions 1 (TPR1) that interacts with TP and DNA, and 2 (TPR2), that couples both processivity and strand displacement to the enzyme. The superimposition of the structures of the apo polymerase and the polymerase in the polymerase/TP heterodimer shows that the structural changes are restricted almost to the TPR1 loop (residues 304-314). In order to study the role of this loop in binding the DNA and the TP, we changed the residues Arg306, Arg308, Phe309, Tyr310, and Lys311 into alanine, and also made the deletion mutant Δ6 lacking residues Arg306-Lys311. The results show a defective TP binding capacity in mutants R306A, F309A, Y310A, and Δ6. The additional impaired primer-terminus stabilization at the polymerization active site in mutants Y310A and Δ6 allows us to propose a role for the Phi29 DNA polymerase TPR1 loop in the proper positioning of the DNA and TP-priming 3'-OH termini at the preinsertion site of the polymerase to enable efficient initiation and further elongation steps during Phi29 TP-DNA replication.


Assuntos
DNA Polimerase Dirigida por DNA/química , Proteínas Virais/química , Domínio Catalítico , DNA Polimerase Dirigida por DNA/genética , Mutagênese Sítio-Dirigida , Polimerização , Proteínas Virais/genética
5.
Sci Rep ; 9(1): 9947, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289311

RESUMO

Bacterial/archaeal family X DNA polymerases (PolXs) have a C-terminal PHP domain with an active site formed by nine histidines and aspartates that catalyzes 3'-5' exonuclease, AP-endonuclease, 3'-phosphodiesterase and 3'-phosphatase activities. Multiple sequence alignments have allowed us to identify additional highly conserved residues along the PHP domain of bacterial/archaeal PolXs that form an electropositive path to the catalytic site and whose potential role in the nucleolytic activities had not been established. Here, site directed mutagenesis at the corresponding Bacillus subtilis PolX (PolXBs) residues, Arg469, Arg474, Asn498, Arg503 and Lys545, as well as to the highly conserved residue Phe440 gave rise to enzymes severely affected in all the nucleolytic activities of the enzyme while conserving a wild-type gap-filling activity, indicating a function of those residues in DNA binding at the PHP domain. Altogether, the results obtained with the mutant proteins, the spatial arrangement of those DNA binding residues, the intermolecular transference of the 3'-terminus between the PHP and polymerization active sites, and the available 3D structures of bacterial PolXs led us to propose the requirement to a great degree of a functional/structural flexibility to coordinate the synthetic and degradative activities in these enzymes.


Assuntos
Proteínas Arqueais/metabolismo , Bacillus subtilis/enzimologia , DNA Polimerase Dirigida por DNA/metabolismo , Deinococcus/enzimologia , Histidinol-Fosfatase/química , Mutação , Proteínas Arqueais/química , Proteínas Arqueais/genética , Bacillus subtilis/genética , Domínio Catalítico , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Deinococcus/genética , Mutagênese Sítio-Dirigida
6.
Nucleic Acids Res ; 47(10): 5276-5292, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30976810

RESUMO

Abasic (AP) sites, the most common DNA lesions are frequently associated with double strand breaks (DSBs) and can pose a block to the final ligation. In many prokaryotes, nonhomologous end joining (NHEJ) repair of DSBs relies on a two-component machinery constituted by the ring-shaped DNA-binding Ku that recruits the multicatalytic protein Ligase D (LigD) to the ends. By using its polymerization and ligase activities, LigD fills the gaps that arise after realignment of the ends and seals the resulting nicks. Here, we show the presence of a robust AP lyase activity in the polymerization domain of Bacillus subtilis LigD (BsuLigD) that cleaves AP sites preferentially when they are proximal to recessive 5'-ends. Such a reaction depends on both, metal ions and the formation of a Watson-Crick base pair between the incoming nucleotide and the templating one opposite the AP site. Only after processing the AP site, and in the presence of the Ku protein, BsuLigD catalyzes both, the in-trans addition of the nucleotide to the 3'-end of an incoming primer and the ligation of both ends. These results imply that formation of a preternary-precatalytic complex ensures the coupling of AP sites cleavage to the end-joining reaction by the bacterial LigD.


Assuntos
Bacillus subtilis/enzimologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , DNA Bacteriano/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/enzimologia , Humanos , Íons , Autoantígeno Ku/metabolismo , Mutagênese Sítio-Dirigida , Nucleotídeos/metabolismo , Oligonucleotídeos , Ligação Proteica , Domínios Proteicos
7.
Sci Rep ; 9(1): 923, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696917

RESUMO

Bacteriophage ϕ29 DNA polymerase has two activities: DNA polymerization and 3'-5' exonucleolysis governed by catalytic sites present in two structurally distant domains. These domains must work together to allow the correct replication of the template and to prevent the accumulation of errors in the newly synthesized DNA strand. ϕ29 DNA polymerase is endowed with a high processivity and strand displacement capacity together with a high fidelity. Previous studies of its crystallographic structure suggested possible interactions of residues of the exonuclease domain like the Gln180 with the fingers subdomain, or water mediated and direct hydrogen bond by the polar groups of residues Tyr101 and Thr189 that could stabilize DNA binding. To analyse their functional importance for the exonuclease activity of ϕ29 DNA polymerase we engineered mutations to encode amino acid substitutions. Our results confirm that both residues, Tyr101 and Thr189 are involved in the 3'-5' exonuclease activity and in binding the dsDNA. In addition, Tyr101 is playing a role in processivity and Thr189 is an important determinant in the fidelity of the DNA polymerase. On the other hand, the biochemical characterization of the mutant derivatives of residue Gln180 showed how the mutations introduced enhanced the 3'-5' exonuclease activity of the enzyme. A potential structural conformation prone to degrade the substrate is discussed.


Assuntos
Bacteriófagos/fisiologia , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(13): E2921-E2929, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531047

RESUMO

Most replicative DNA polymerases (DNAPs) are endowed with a 3'-5' exonuclease activity to proofread the polymerization errors, governed by four universally conserved aspartate residues belonging to the Exo I, Exo II, and Exo III motifs. These residues coordinate the two metal ions responsible for the hydrolysis of the last phosphodiester bond of the primer strand. Structural alignment of the conserved exonuclease domain of DNAPs from families A, B, and C has allowed us to identify an additional and invariant aspartate, located between motifs Exo II and Exo III. The importance of this aspartate has been assessed by site-directed mutagenesis at the corresponding Asp121 of the family B ϕ29 DNAP. Substitution of this residue by either glutamate or alanine severely impaired the catalytic efficiency of the 3'-5' exonuclease activity, both on ssDNA and dsDNA. The polymerization activity of these mutants was also affected due to a defective translocation following nucleotide incorporation. Alanine substitution for the homologous Asp90 in family A T7 DNAP showed essentially the same phenotype as ϕ29 DNAP mutant D121A. This functional conservation, together with a close inspection of ϕ29 DNAP/DNA complexes, led us to conclude a pivotal role for this aspartate in orchestrating the network of interactions required during internal proofreading of misinserted nucleotides.


Assuntos
Ácido Aspártico/genética , Fagos Bacilares/enzimologia , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Mutação , Sequência de Aminoácidos , Fagos Bacilares/genética , DNA Polimerase Dirigida por DNA/genética , Exodesoxirribonucleases/genética , Mutagênese Sítio-Dirigida , Homologia de Sequência
9.
Sci Rep ; 7(1): 6907, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761124

RESUMO

Phaeocystis globosa virus 16T is a giant virus that belongs to the so-called nucleo-cytoplasmic large DNA virus (NCLDV) group. Its linear dsDNA genome contains an almost full complement of genes required to participate in viral base excision repair (BER). Among them is a gene coding for a bimodular protein consisting of an N-terminal Polß-like core fused to a C-terminal domain (PgVPolX), which shows homology with NAD+-dependent DNA ligases. Analysis of the biochemical features of the purified enzyme revealed that PgVPolX is a multifunctional protein that could act as a "Swiss army knife" enzyme during BER since it is endowed with: 1) a template-directed DNA polymerization activity, preferentially acting on DNA structures containing gaps; 2) 5'-deoxyribose-5-phosphate (dRP) and abasic (AP) site lyase activities; and 3) an NAD+-dependent DNA ligase activity. We show how the three activities act in concert to efficiently repair BER intermediates, leading us to suggest that PgVPolX may constitute, together with the viral AP-endonuclease, a BER pathway. This is the first time that this type of protein fusion has been demonstrated to be functional.


Assuntos
Reparo do DNA , Vírus de DNA/enzimologia , DNA Polimerase Dirigida por DNA/metabolismo , DNA Ligases/química , DNA Ligases/metabolismo , Replicação do DNA , Vírus de DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Genoma Viral , Proteínas Virais/química , Proteínas Virais/metabolismo
10.
DNA Repair (Amst) ; 52: 59-69, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28254425

RESUMO

8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodG) is a major lesion resulting from oxidative stress and found in both DNA and dNTP pools. Such a lesion is usually removed from DNA by the Base Excision Repair (BER), a universally conserved DNA repair pathway. 8oxodG usually adopts the favored and promutagenic syn-conformation at the active site of DNA polymerases, allowing the base to hydrogen bonding with adenine during DNA synthesis. Here, we study the structural determinants that affect the glycosidic torsion-angle of 8oxodGTP at the catalytic active site of the family X DNA polymerase from Bacillus subtilis (PolXBs). We show that, unlike most DNA polymerases, PolXBs exhibits a similar efficiency to stabilize the anti and syn conformation of 8oxodGTP at the catalytic site. Kinetic analyses indicate that at least two conserved residues of the nucleotide binding pocket play opposite roles in the anti/syn conformation selectivity, Asn263 and His255 that favor incorporation of 8oxodGMP opposite dA and dC, respectively. In addition, the presence in PolXBs of Mn2+-dependent 3'-phosphatase and 3'-phosphodiesterase activities is also shown. Those activities rely on the catalytic center of the C-terminal Polymerase and Histidinol Phosphatase (PHP) domain of PolXBs and, together with its 3'-5' exonuclease activity allows the enzyme to resume gap-filling after processing of damaged 3' termini.


Assuntos
Bacillus subtilis/enzimologia , Domínio Catalítico , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Modelos Moleculares , 8-Hidroxi-2'-Desoxiguanosina , Sequência de Aminoácidos , Bacillus subtilis/genética , Reparo do DNA , DNA Bacteriano/metabolismo , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Cinética , Conformação Molecular , Alinhamento de Sequência
11.
Front Mol Biosci ; 3: 37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547754

RESUMO

Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5' ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3'-5' exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the TP at the bacterial nucleoid, where viral DNA replication takes place. The biochemical properties of the Φ29 DBP and SSB and their function in the initiation and elongation of Φ29 DNA replication, respectively, will be described.

12.
Nucleic Acids Res ; 44(4): 1833-44, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26826709

RESUMO

Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5'-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2'-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs.


Assuntos
Bacillus subtilis/enzimologia , Reparo do DNA por Junção de Extremidades/genética , DNA Ligases/genética , Fósforo-Oxigênio Liases/genética , Quebras de DNA de Cadeia Dupla , DNA Ligases/metabolismo , Reparo do DNA/genética , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia
13.
J Biol Chem ; 290(45): 27138-27145, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26400085

RESUMO

Bacteriophage φ29 from Bacillus subtilis starts replication of its terminal protein (TP)-DNA by a protein-priming mechanism. To start replication, the DNA polymerase forms a heterodimer with a free TP that recognizes the replication origins, placed at both 5' ends of the linear chromosome, and initiates replication using as primer the OH-group of Ser-232 of the TP. The initiation of φ29 TP-DNA replication mainly occurs opposite the second nucleotide at the 3' end of the template. Earlier analyses of the template position that directs the initiation reaction were performed using single-stranded and double-stranded oligonucleotides containing the replication origin sequence without the parental TP. Here, we show that the parental TP has no influence in the determination of the nucleotide used as template in the initiation reaction. Previous studies showed that the priming domain of the primer TP determines the template position used for initiation. The results obtained here using mutant TPs at the priming loop where Ser-232 is located indicate that the aromatic residue Phe-230 is one of the determinants that allows the positioning of the penultimate nucleotide at the polymerization active site to direct insertion of the initiator dAMP during the initiation reaction. The role of Phe-230 in limiting the internalization of the template strand in the polymerization active site is discussed.


Assuntos
Fagos Bacilares/genética , Fagos Bacilares/metabolismo , Replicação do DNA/genética , DNA Viral/biossíntese , DNA Viral/genética , Moldes Genéticos , Sequência de Aminoácidos , Substituição de Aminoácidos , Bacillus subtilis/virologia , Sequência de Bases , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fenilalanina/química , Origem de Replicação , Homologia de Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(27): E3476-84, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100910

RESUMO

DNA polymerases (DNAPs) responsible for genome replication are highly faithful enzymes that nonetheless cannot deal with damaged DNA. In contrast, translesion synthesis (TLS) DNAPs are suitable for replicating modified template bases, although resulting in very low-fidelity products. Here we report the biochemical characterization of the temperate bacteriophage Bam35 DNA polymerase (B35DNAP), which belongs to the protein-primed subgroup of family B DNAPs, along with phage Φ29 and other viral and mobile element polymerases. B35DNAP is a highly faithful DNAP that can couple strand displacement to processive DNA synthesis. These properties allow it to perform multiple displacement amplification of plasmid DNA with a very low error rate. Despite its fidelity and proofreading activity, B35DNAP was able to successfully perform abasic site TLS without template realignment and inserting preferably an A opposite the abasic site (A rule). Moreover, deletion of the TPR2 subdomain, required for processivity, impaired primer extension beyond the abasic site. Taken together, these findings suggest that B35DNAP may perform faithful and processive genome replication in vivo and, when required, TLS of abasic sites.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Virais/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Sequência de Bases , Replicação do DNA/genética , DNA Viral/genética , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/genética , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Polimerização , Proteínas Virais/genética
15.
Nucleic Acids Res ; 42(21): 13082-95, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25355514

RESUMO

Intracellular reactive oxygen species as well as the exposure to harsh environmental conditions can cause, in the single chromosome of Bacillus subtilis spores, the formation of apurinic/apyrimidinic (AP) sites and strand breaks whose repair during outgrowth is crucial to guarantee cell viability. Whereas double-stranded breaks are mended by the nonhomologous end joining (NHEJ) system composed of an ATP-dependent DNA Ligase D (LigD) and the DNA-end-binding protein Ku, repair of AP sites would rely on an AP endonuclease or an AP-lyase, a polymerase and a ligase. Here we show that B. subtilis Ku (BsuKu), along with its pivotal role in allowing joining of two broken ends by B. subtilis LigD (BsuLigD), is endowed with an AP/deoxyribose 5'-phosphate (5'-dRP)-lyase activity that can act on ssDNA, nicked molecules and DNA molecules without ends, suggesting a potential role in BER during spore outgrowth. Coordination with BsuLigD makes possible the efficient joining of DNA ends with near terminal abasic sites. The role of this new enzymatic activity of Ku and its potential importance in the NHEJ pathway is discussed. The presence of an AP-lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa allows us to expand our results to other bacterial Ku proteins.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Reparo do DNA por Junção de Extremidades , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fósforo-Oxigênio Liases/metabolismo , DNA/metabolismo , DNA Ligases/metabolismo
16.
J Biol Chem ; 289(5): 2888-98, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24324256

RESUMO

The LEXE motif, conserved in eukaryotic type DNA polymerases, is placed close to the polymerization active site. Previous studies suggested that the second Glu was involved in binding a third noncatalytic ion in bacteriophage RB69 DNA polymerase. In the protein-primed DNA polymerase subgroup, the LEXE motif lacks the first Glu in most cases, but it has a conserved Phe/Trp and a Gly preceding that position. To ascertain the role of those residues, we have analyzed the behavior of mutants at the corresponding ϕ29 DNA polymerase residues Gly-481, Trp-483, Ala-484, and Glu-486. We show that mutations at Gly-481 and Trp-483 hamper insertion of the incoming dNTP in the presence of Mg(2+) ions, a reaction highly improved when Mn(2+) was used as metal activator. These results, together with previous crystallographic resolution of ϕ29 DNA polymerase ternary complex, allow us to infer that Gly-481 and Trp-483 could form a pocket that orients Val-250 to interact with the dNTP. Mutants at Glu-486 are also defective in polymerization and, as mutants at Gly-481 and Trp-483, in the pyrophosphorolytic activity with Mg(2+). Recovery of both reactions with Mn(2+) supports a role for Glu-486 in the interaction with the pyrophosphate moiety of the dNTP.


Assuntos
Fagos Bacilares/enzimologia , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos/fisiologia , Fagos Bacilares/química , Fagos Bacilares/genética , Domínio Catalítico/fisiologia , Cristalografia por Raios X , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Magnésio/metabolismo , Manganês/metabolismo , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Virais/química , Proteínas Virais/genética
17.
PLoS One ; 8(9): e72765, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023769

RESUMO

Resolution of the crystallographic structure of φ29 DNA polymerase binary and ternary complexes showed that residue Lys529, located at the C-terminus of the palm subdomain, establishes contacts with the 3' terminal phosphodiester bond. In this paper, site-directed mutants at this Lys residue were used to analyse its functional importance for the synthetic activities of φ29 DNA polymerase, an enzyme that starts linear φ29 DNA replication using a terminal protein (TP) as primer. Our results show that single replacement of φ29 DNA polymerase residue Lys529 by Ala or Glu decreases the stabilisation of the primer-terminus at the polymerisation active site, impairing both the insertion of the incoming nucleotide when DNA and TP are used as primers and the translocation step required for the next incoming nucleotide incorporation. In addition, combination of the DNA polymerase mutants with a TP derivative at residue Glu233, neighbour to the priming residue Ser232, leads us to infer a direct contact between Lys529 and Glu233 for initiation of TP-DNA replication. Altogether, the results are compatible with a sequential binding of φ29 DNA polymerase residue Lys529 with TP and DNA during replication of TP-DNA.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Lisina/química , Replicação do DNA/genética , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Lisina/genética , Mutagênese Sítio-Dirigida , Relação Estrutura-Atividade
18.
PLoS One ; 8(5): e64232, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691176

RESUMO

It is widely accepted that repair of double-strand breaks in bacteria that either sporulate or that undergo extended periods of stationary phase relies not only on homologous recombination but also on a minimal nonhomologous end joining (NHEJ) system consisting of a dedicated multifunctional ATP-dependent DNA Ligase D (LigD) and the DNA-end-binding protein Ku. Bacillus subtilis is one of the bacterial members with a NHEJ system that contributes to genome stability during the stationary phase and germination of spores, having been characterized exclusively in vivo. Here, the in vitro analysis of the functional properties of the purified B. subtilis LigD (BsuLigD) and Ku (BsuKu) proteins is presented. The results show that the essential biochemical signatures exhibited by BsuLigD agree with its proposed function in NHEJ: i) inherent polymerization activity showing preferential insertion of NMPs, ii) specific recognition of the phosphate group at the downstream 5' end, iii) intrinsic ligase activity, iv) ability to promote realignments of the template and primer strands during elongation of mispaired 3' ends, and v) it is recruited to DNA by BsuKu that stimulates the inherent polymerization and ligase activities of the enzyme allowing it to deal with and to hold different and unstable DNA realignments.


Assuntos
Bacillus subtilis/fisiologia , Reparo do DNA por Junção de Extremidades/fisiologia , DNA Ligases/química , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , DNA Ligases/isolamento & purificação , Proteínas de Ligação a DNA/isolamento & purificação , Oligonucleotídeos/genética , Fosfatos/metabolismo
19.
PLoS One ; 7(10): e48257, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23110220

RESUMO

Bacteriophages ϕ29 and Nf from Bacillus subtilis start replication of their linear genomes at both ends using a protein-primed mechanism by means of which the DNA polymerase initiates replication by adding dAMP to the terminal protein, this insertion being directed by the second and third 3' terminal thymine of the template strand, respectively. In this work, we have obtained evidences about the role of the 3' terminal base during the initiation steps of ϕ29 and Nf genome replication. The results indicate that the absence of the 3' terminal base modifies the initiation position carried out by ϕ29 DNA polymerase in such a way that now the third position of the template, instead of the second one, guides the incorporation of the initiating nucleotide. In the case of Nf, although the lack of the 3' terminal base has no effect on the initiation position, its absence impairs further elongation of the TP-dAMP initiation product. The results show the essential role of the 3' terminal base in guaranteeing the correct positioning of replication origins at the polymerization active site to allow accurate initiation of replication and further elongation.


Assuntos
Replicação do DNA/genética , Fagos Bacilares/genética , DNA Polimerase Dirigida por DNA/metabolismo , Origem de Replicação/genética , Origem de Replicação/fisiologia , Moldes Genéticos
20.
Nucleic Acids Res ; 40(19): 9750-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22844091

RESUMO

Family X DNA polymerases (PolXs) are involved in DNA repair. Their binding to gapped DNAs relies on two conserved helix-hairpin-helix motifs, one located at the 8-kDa domain and the other at the fingers subdomain. Bacterial/archaeal PolXs have a specifically conserved third helix-hairpin-helix motif (GFGxK) at the fingers subdomain whose putative role in DNA binding had not been established. Here, mutagenesis at the corresponding residues of Bacillus subtilis PolX (PolXBs), Gly130, Gly132 and Lys134 produced enzymes with altered DNA binding properties affecting the three enzymatic activities of the protein: polymerization, located at the PolX core, 3'-5' exonucleolysis and apurinic/apyrimidinic (AP)-endonucleolysis, placed at the so-called polymerase and histidinol phosphatase domain. Furthermore, we have changed Lys192 of PolXBs, a residue moderately conserved in the palm subdomain of bacterial PolXs and immediately preceding two catalytic aspartates of the polymerization reaction. The results point to a function of residue Lys192 in guaranteeing the right orientation of the DNA substrates at the polymerization and histidinol phosphatase active sites. The results presented here and the recently solved structures of other bacterial PolX ternary complexes lead us to propose a structural model to account for the appropriate coordination of the different catalytic activities of bacterial PolXs.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Polimerase Dirigida por DNA/química , Exodesoxirribonucleases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Archaea/enzimologia , Ácido Aspártico/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/biossíntese , DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fenótipo , Ligação Proteica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA