Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 35(6): 859-872, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29877328

RESUMO

This paper presents an adaptation of the distributed-spline-based aberration reconstruction method for Shack-Hartmann (SH) slope measurements to extremely large-scale adaptive optics systems and the execution on graphics processing units (GPUs). The introduction of a hierarchical multi-level scheme for the elimination of piston offsets between the locally computed wavefront (WF) estimates solves the piston error propagation observed for a large number of partitions with the original version. To obtain a fully distributed method for WF correction, the projection of the phase estimates is locally approximated and applied in a distributed fashion, providing stable results for low and medium actuator coupling. An implementation of the method with the parallel computing platform CUDA exploits the inherently distributed nature of the algorithm. With a standard off-the-shelf GPU, the computation of the adaptive optics correction updates is accomplished in under 1 ms for the benchmark case of a 200×200 SH array.

2.
IEEE Trans Neural Netw Learn Syst ; 29(4): 1069-1081, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28182560

RESUMO

Self-learning approaches, such as reinforcement learning, offer new possibilities for autonomous control of uncertain or time-varying systems. However, exploring an unknown environment under limited prediction capabilities is a challenge for a learning agent. If the environment is dangerous, free exploration can result in physical damage or in an otherwise unacceptable behavior. With respect to existing methods, the main contribution of this paper is the definition of a new approach that does not require global safety functions, nor specific formulations of the dynamics or of the environment, but relies on interval estimation of the dynamics of the agent during the exploration phase, assuming a limited capability of the agent to perceive the presence of incoming fatal states. Two algorithms are presented with this approach. The first is the Safety Handling Exploration with Risk Perception Algorithm (SHERPA), which provides safety by individuating temporary safety functions, called backups. SHERPA is shown in a simulated, simplified quadrotor task, for which dangerous states are avoided. The second algorithm, denominated OptiSHERPA, can safely handle more dynamically complex systems for which SHERPA is not sufficient through the use of safety metrics. An application of OptiSHERPA is simulated on an aircraft altitude control task.

3.
J Opt Soc Am A Opt Image Sci Vis ; 34(9): 1535-1549, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036157

RESUMO

We propose an extension of the Spline based ABerration Reconstruction (SABRE) method to Shack-Hartmann (SH) intensity measurements, through small aberration approximations of the focal spot models. The original SABRE for SH slope measurements is restricted to the use of linear spline polynomials, due to the limited amount of data, and the resolution of its reconstruction is determined by the number of lenslets. In this work, a fast algorithm is presented that directly processes the pixel information of the focal spots, allowing the employment of nonlinear polynomials for high accuracy reconstruction. In order to guarantee the validity of the small aberration approximations, the method is applied in two correction steps, with a first compensation of large, low-order aberrations through the gradient-based linear SABRE followed by compensation of the remaining high-order aberrations with the intensity-based nonlinear SABRE.

4.
J Opt Soc Am A Opt Image Sci Vis ; 33(5): 817-31, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27140879

RESUMO

The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.

5.
Artif Life ; 22(1): 23-48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26606468

RESUMO

Evolutionary Robotics allows robots with limited sensors and processing to tackle complex tasks by means of sensory-motor coordination. In this article we show the first application of the Behavior Tree framework on a real robotic platform using the evolutionary robotics methodology. This framework is used to improve the intelligibility of the emergent robotic behavior over that of the traditional neural network formulation. As a result, the behavior is easier to comprehend and manually adapt when crossing the reality gap from simulation to reality. This functionality is shown by performing real-world flight tests with the 20-g DelFly Explorer flapping wing micro air vehicle equipped with a 4-g onboard stereo vision system. The experiments show that the DelFly can fully autonomously search for and fly through a window with only its onboard sensors and processing. The success rate of the optimized behavior in simulation is 88%, and the corresponding real-world performance is 54% after user adaptation. Although this leaves room for improvement, it is higher than the 46% success rate from a tuned user-defined controller.


Assuntos
Evolução Biológica , Redes Neurais de Computação , Robótica
6.
J Opt Soc Am A Opt Image Sci Vis ; 30(1): 82-95, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23456004

RESUMO

This paper presents a new method for zonal wavefront reconstruction (WFR) with application to adaptive optics systems. This new method, indicated as Spline based ABerration REconstruction (SABRE), uses bivariate simplex B-spline basis functions to reconstruct the wavefront using local wavefront slope measurements. The SABRE enables WFR on nonrectangular and partly obscured sensor grids and is not subject to the waffle mode. The performance of SABRE is compared to that of the finite difference (FD) method in numerical experiments using data from a simulated Shack-Hartmann lenslet array. The results show that SABRE offers superior reconstruction accuracy and noise rejection capabilities compared to the FD method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA