Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Br J Pharmacol ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583945

RESUMO

BACKGROUND AND PURPOSE: Calcitonin gene-related peptide (CGRP) is a potent vasodilator. While its signalling is assumed to be mediated via increases in cAMP, this study focused on elucidating the actual intracellular signalling pathways involved in CGRP-induced relaxation of human isolated coronary arteries (HCA). EXPERIMENTAL APPROACH: HCA were obtained from heart valve donors (27 M, 25 F, age 54 ± 2 years). Concentration-response curves to human α-CGRP or forskolin were constructed in HCA segments, incubated with different inhibitors of intracellular signalling pathways, and intracellular cAMP levels were measured with and without stimulation. RESULTS: Adenylyl cyclase (AC) inhibitors SQ22536 + DDA and MDL-12330A, and PKA inhibitors Rp-8-Br-cAMPs and H89, did not inhibit CGRP-induced relaxation of HCA, nor did the guanylyl cyclase inhibitor ODQ, PKG inhibitor KT5823, EPAC1/2 inhibitor ESI09, potassium channel blockers TRAM-34 + apamin, iberiotoxin or glibenclamide, or the Gαq inhibitor YM-254890. Phosphodiesterase inhibitors induced a concentration-dependent decrease in the response to KCl but did not potentiate relaxation to CGRP. Relaxation to forskolin was not blocked by PKA or AC inhibitors, although AC inhibitors significantly inhibited the increase in cAMP. Inhibition of Gßγ subunits using gallein significantly inhibited the relaxation to CGRP in human coronary arteries. CONCLUSION: While CGRP signalling is generally assumed to act via cAMP, the CGRP-induced vasodilation in HCA was not inhibited by targeting this intracellular signalling pathway at different levels. Instead, inhibition of Gßγ subunits did inhibit the relaxation to CGRP, suggesting a different mechanism of CGRP-induced relaxation than generally believed.

2.
Eur J Pharmacol ; 962: 176199, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38029870

RESUMO

BACKGROUND: Anticancer angiogenesis inhibitors cause hypertension and renal injury. Previously we observed in rats that high-dose aspirin (capable of blocking cyclooxygenase (COX)-1 and-2) was superior to low-dose aspirin (blocking COX-1 only) to prevent these side-effects during treatment with the angiogenesis inhibitor sunitinib, suggesting a role for COX-2. High-dose aspirin additionally prevented the rise in COX-derived prostacyclin (PGI2). Therefore, we studied the preventive effects of selective COX-2 inhibition and the hypothesized contributing role of PGI2 during angiogenesis inhibition. METHODS: Male WKY rats received vehicle, sunitinib ((SU), 14 mg/kg/day) alone or combined with COX-2 inhibition (celecoxib, 10 mg/kg/day) or a PGI2 analogue (iloprost, 100 µg/kg/day) for 8 days (n = 8-9 per group). Mean arterial pressure (MAP) was measured via radiotelemetry, biochemical measurements were performed via ELISA and vascular function was assessed via wire myography. RESULTS: SU increased MAP (17±1mmHg versus 3±1mmHg after vehicle on day 4, P < 0.002), which could not be significantly blunted by celecoxib (+12±3mmHg on day 4, P = 0.247), but was temporarily attenuated by iloprost (treatment days 1 + 2 only). Urinary PGI2 (996 ± 112 versus 51 ± 11ng/24h after vehicle, P < 0.001), but not circulating PGI2 increased during SU, which remained unaffected by celecoxib and iloprost. Celecoxib reduced sunitinib-induced albuminuria (0.36 ± 0.05 versus 0.58 ± 0.05mg/24h after SU, P = 0.005). Wire myography demonstrated increased vasoconstriction to endothelin-1 after SU (Emax P = 0.005 versus vehicle), which remained unaffected by celecoxib or iloprost. CONCLUSION: Selective COX-2 inhibition ameliorates albuminuria during angiogenesis inhibition with sunitinib, which most likely acts independently of PGI2. To combat angiogenesis inhibitor-induced hypertension, dual rather than selective COX-1/2 blockade seems preferential.


Assuntos
Albuminúria , Hipertensão , Animais , Masculino , Ratos , Albuminúria/induzido quimicamente , Albuminúria/prevenção & controle , Albuminúria/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Aspirina/uso terapêutico , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/prevenção & controle , Iloprosta/farmacologia , Ratos Endogâmicos WKY , Sunitinibe/farmacologia
3.
Euro Surveill ; 28(16)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37078882

RESUMO

BackgroundDuring the COVID-19 pandemic, international shipping activity was disrupted as movement of people and goods was restricted. The Port of Rotterdam, the largest port in Europe, remained operational throughout.AimWe describe the burden of COVID-19 among crew on sea-going vessels at the port and recommend improvements in future infectious disease event notification and response at commercial ports.MethodsSuspected COVID-19 cases on sea-going vessels were notified to port authorities and public health (PH) authorities pre-arrival via the Maritime Declaration of Health. We linked data from port and PH information systems between 1 January 2020 and 31 July 2021, derived a notification rate (NR) of COVID-19 events per arrival, and an attack rate (AR) per vessel (confirmed cases). We compared AR by vessel type (workship/tanker/cargo/passenger), during wildtype-, alpha- and delta-dominant calendar periods.ResultsEighty-four COVID-19 events were notified on ships, involving 622 cases. The NR among 45,030 new arrivals was 173 per 100,000 impacting 1% of vessels. Events per week peaked in April 2021 and again in July 2021, when the AR was also highest. Half of all cases were notified on workships, events occurring earlier and more frequently than on other vessels.ConclusionNotification of COVID-19 events on ships occurred infrequently, although case under-ascertainment was likely. Pre-agreed protocols for data-sharing between stakeholders locally and across Europe would facilitate more efficient pandemic response. Public health access to specimens for sequencing and environmental sampling would give greater insight into viral spread on ships.


Assuntos
COVID-19 , Navios , Humanos , Países Baixos/epidemiologia , Pandemias , COVID-19/epidemiologia , Surtos de Doenças , Notificação de Doenças
4.
Aging Cell ; 21(9): e13683, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36029161

RESUMO

DNA damage is a causative factor in ageing of the vasculature and other organs. One of the most important vascular ageing features is reduced nitric oxide (NO)soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signaling. We hypothesized that the restoration of NO-sGC-cGMP signaling with an sGC activator (BAY 54-6544) may have beneficial effects on vascular ageing and premature death in DNA repair-defective mice undergoing accelerated ageing. Eight weeks of treatment with a non-pressor dosage of BAY 54-6544 restored the decreased in vivo microvascular cutaneous perfusion in progeroid Ercc1∆/- mice to the level of wild-type mice. In addition, BAY 54-6544 increased survival of Ercc1∆/- mice. In isolated Ercc1∆/- aorta, the decreased endothelium-independent vasodilation was restored after chronic BAY 54-6544 treatment. Senescence markers p16 and p21, and markers of inflammation, including Ccl2, Il6 in aorta and liver, and circulating IL-6 and TNF-α were increased in Ercc1∆/- , which was lowered by the treatment. Expression of antioxidant genes, including Cyb5r3 and Nqo1, was favorably changed by chronic BAY 54-6544 treatment. In summary, BAY 54-6544 treatment improved the vascular function and survival rates in mice with accelerated ageing, which may have implication in prolonging health span in progeria and normal ageing.


Assuntos
Guanilato Ciclase , Pirazóis , Animais , Camundongos , Envelhecimento , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Piridinas , Receptores Citoplasmáticos e Nucleares/genética , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo
5.
Br J Pharmacol ; 179(22): 5074-5088, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35861684

RESUMO

BACKGROUND AND PURPOSE: Recently pentoxifylline, a non-selective phosphodiesterase inhibitor and adenosine receptor antagonist, has attracted much interest for the treatment of the increased vascular resistance and endothelial dysfunction in pre-eclampsia. We therefore investigated the placental transfer, vascular effects and anti-inflammatory actions of pentoxifylline in healthy and pre-eclamptic human placentas. EXPERIMENTAL APPROACH: The placental transfer and metabolism of pentoxifylline were studied using ex vivo placenta perfusion experiments. In wire myography experiments with chorionic plate arteries, pentoxifyllines vasodilator properties were investigated, focusing on the cGMP and cAMP pathways and adenosine receptors. Its effects on inflammatory factors were also studied in placental explants. KEY RESULTS: Pentoxifylline transferred from the maternal to foetal circulation, reaching identical concentrations. The placenta metabolized pentoxifylline into its active metabolite lisofylline (M1), which was released into both circulations. In healthy placentas, pentoxifylline potentiated cAMP- and cGMP-induced vasodilation, as well as causing vasodilation by adenosine A1 antagonism and via NO synthase and PKG. Pentoxifylline also reduced inflammatory factors secretion. In pre-eclamptic placentas, we observed that its vasodilator capacity was preserved, however not via NO-PKG but likely through adenosine signalling. Pentoxifylline neither potentiated vasodilation through cAMP and cGMP, nor suppressed the release of inflammatory factors from these placentas. CONCLUSION AND IMPLICATIONS: Pentoxifylline is transferred across and metabolized by the placenta. Its beneficial effects on the NO pathway and inflammation are not retained in pre-eclampsia, limiting its application in this disease, although it could be useful for other placenta-related disorders. Future studies might focus on selective A1 receptor antagonists as a new treatment for pre-eclampsia.


Assuntos
Pentoxifilina , Pré-Eclâmpsia , Adenosina/farmacologia , Anti-Inflamatórios/farmacologia , GMP Cíclico/metabolismo , Feminino , Humanos , Óxido Nítrico Sintase/metabolismo , Pentoxifilina/metabolismo , Pentoxifilina/farmacologia , Pentoxifilina/uso terapêutico , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Placenta/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Gravidez , Antagonistas de Receptores Purinérgicos P1/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Vasodilatadores/farmacologia
6.
Clin Sci (Lond) ; 136(9): 675-694, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35441670

RESUMO

Vascular endothelial growth factor antagonism with angiogenesis inhibitors in cancer patients induces a 'preeclampsia-like' syndrome including hypertension, proteinuria and elevated endothelin (ET)-1. Cyclo-oxygenase (COX) inhibition with aspirin is known to prevent the onset of preeclampsia in high-risk patients. In the present study, we hypothesised that treatment with aspirin would prevent the development of angiogenesis inhibitor-induced hypertension and kidney damage. Our aims were to compare the effects of low-dose (COX-1 inhibition) and high-dose (dual COX-1 and COX-2 inhibition) aspirin on blood pressure, vascular function, oxidative stress, ET-1 and prostanoid levels and kidney damage during angiogenesis-inhibitor therapy in rodents. To this end, Wistar Kyoto rats were treated with vehicle, angiogenesis inhibitor (sunitinib) alone or in combination with low- or high-dose aspirin for 8 days (n=5-7/group). Our results demonstrated that prostacyclin (PGI2) and ET-1 were increased during angiogenesis-inhibitor therapy, while thromboxane (TXA2) was unchanged. Both low- and high-dose aspirin blunted angiogenesis inhibitor-induced hypertension and vascular superoxide production to a similar extent, whereas only high-dose aspirin prevented albuminuria. While circulating TXA2 and prostaglandin F2α levels were reduced by both low- and high-dose aspirin, circulating and urinary levels PGI2 were only reduced by high-dose aspirin. Lastly, treatment with aspirin did not significantly affect ET-1 or vascular function. Collectively our findings suggest that prostanoids contribute to the development of angiogenesis inhibitor-induced hypertension and renal damage and that targeting the prostanoid pathway could be an effective strategy to mitigate the unwanted cardiovascular and renal toxicities associated with angiogenesis inhibitors.


Assuntos
Hipertensão , Pré-Eclâmpsia , Inibidores da Angiogênese/uso terapêutico , Animais , Aspirina/farmacologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Endotelina-1/metabolismo , Epoprostenol/metabolismo , Epoprostenol/farmacologia , Epoprostenol/uso terapêutico , Feminino , Humanos , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Rim/metabolismo , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Gravidez , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Oxid Med Cell Longev ; 2021: 2308317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504640

RESUMO

Persistently unrepaired DNA damage has been identified as a causative factor for vascular ageing. We have previously shown that a defect in the function or expression of the DNA repair endonuclease ERCC1 (excision repair cross complement 1) in mice leads to accelerated, nonatherosclerotic ageing of the vascular system from as early as 8 weeks after birth. Removal of ERCC1 from endothelial alone partly explains this ageing, as shown in endothelial-specific Ercc1 knockout mice. In this study, we determined vascular ageing due to DNA damage in vascular smooth muscle cells, as achieved by smooth muscle-selective genetic removal of ERCC1 DNA repair in mice (SMC-KO: SM22αCre+ Ercc1fl/-). Vascular ageing features in SMC-KO and their wild-type littermates (WT: SM22αCre+ Ercc1fl/+) were examined at the age of 14 weeks and 25 weeks. Both SMC-KO and WT mice were normotensive. Compared to WT, SMC-KO showed a reduced heart rate, fractional shortening, and cardiac output. SMC-KO showed progressive features of nonatherosclerotic vascular ageing as they aged from 14 to 25 weeks. Decreased subcutaneous microvascular dilatation and increased carotid artery stiffness were observed. Vasodilator responses measured in aortic rings in organ baths showed decreased endothelium-dependent and endothelium-independent responses, mostly due to decreased NO-cGMP signaling. NADPH oxidase 2 and phosphodiesterase 1 inhibition improved dilations. SMC-KO mice showed elevated levels of various cytokines that indicate a balance shift in pro- and anti-inflammatory pathways. In conclusion, SMC-KO mice showed a progressive vascular ageing phenotype in resistant and conduit arteries that is associated with cardiac remodeling and contractile dysfunction. The changes induced by DNA damage might be limited to VSMC but eventually affect EC-mediated responses. The fact that NADPH oxidase 2 as wells as phosphodiesterase 1 inhibition restores vasodilation suggests that both decreased NO bioavailability and cGMP degradation play a role in local vascular smooth muscle cell ageing induced by DNA damage.


Assuntos
Dano ao DNA , Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
8.
J Pharmacol Exp Ther ; 378(2): 173-183, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34099502

RESUMO

Diminished nitric oxide-cGMP-mediated relaxation plays a crucial role in cardiovascular aging, leading to decreased vasodilation, vascular hypertrophy and stiffening, and ultimately, cardiovascular dysfunction. Aging is the time-related worsening of physiologic function due to complex cellular and molecular interactions, and it is at least partly driven by DNA damage. Genetic deletion of the DNA repair enzyme ERCC1 endonuclease in Ercc1Δ/- mice provides us an efficient tool to accelerate vascular aging, explore mechanisms, and test potential treatments. Previously, we identified the cGMP-degrading enzyme phosphodiesterase 1 as a potential treatment target in vascular aging. In the present study, we studied the effect of acute and chronic treatment with ITI-214, a selective phosphodiesterase 1 inhibitor on vascular aging features in Ercc1Δ/- mice. Compared with wild-type mice, Ercc1Δ/- mice at the age of 14 weeks showed decreased reactive hyperemia, diminished endothelium-dependent and -independent responses of arteries in organ baths, carotid wall hypertrophy, and elevated circulating levels of inflammatory cytokines. Acute ITI-214 treatment in organ baths restored the arterial endothelium-independent vasodilation in Ercc1Δ/- mice. An 8-week treatment with 100 mg/kg per day ITI-214 improved endothelium-independent relaxation in both aorta and coronary arteries, at least partly restored the diminished reactive hyperemia, lowered the systolic and diastolic blood pressure, normalized the carotid hypertrophy, and ameliorated inflammatory responses exclusively in Ercc1Δ/- mice. These findings suggest phosphodiesterase 1 inhibition would provide a powerful tool for nitric oxide-cGMP augmentation and have significant therapeutic potential to battle arteriopathy related to aging. SIGNIFICANCE STATEMENT: The findings implicate the key role of phosphodiesterase 1 in vascular function and might be of clinical importance for the prevention of mortalities and morbidities related to vascular complications during aging, as well as for patients with progeria that show a high risk of cardiovascular disease.


Assuntos
Diester Fosfórico Hidrolases , Animais , Endotélio Vascular , Camundongos
9.
Front Pharmacol ; 12: 818355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173613

RESUMO

Age-related cardiovascular diseases (CVDs) remain among the leading global causes of death, and vascular smooth muscle cell (VSMC) remodeling plays an essential role in its pathology. Reduced NO-cGMP pathway signaling is a major feature and pathogenic mechanism underlying vasodilator dysfunction. Recently, we identified phosphodiesterase (PDE) 1, an enzyme that hydrolyzes and inactivates the cyclic nucleotides cAMP and cGMP, and thereby provides a potential treatment target for restoring age-related vascular dysfunction due to aging of VSMC. Based on this hypothesis, we here tested the effects of PDE1 inhibition in a model of SMC-specific accelerated aging mice. SMC-KO and their WT littermates received either vehicle or the PDE1 inhibitor lenrispodun for 8 weeks. Vascular function was measured both in vivo (Laser Doppler technique) and ex vivo (organ bath). Moreover, we deployed UV irradiation in cell culture experiments to model accelerated aging in an in vitro situation. SMC-KO mice display a pronounced loss of vasodilator function in the isolated aorta, the cutaneous microvasculature, and mesenteric arteries. Ex vivo, in isolated vascular tissue, we found that PDE1 inhibition with lenrispodun improves vasodilation, while no improvement was observed in isolated aorta taken from mice after chronic treatment in vivo. However, during lenrispodun treatment in vivo, an enhanced microvascular response in association with upregulated cGMP levels was seen. Further, chronic lenrispodun treatment decreased TNF-α and IL-10 plasma levels while the elevated level of IL-6 in SMC-KO mice remained unchanged after treatment. PDE1 and senescence markers, p16 and p21, were increased in both SMC-KO aorta and cultured human VSMC in which DNA was damaged by ultraviolet irradiation. This increase was lowered by chronic lenrispodun. In contrast, lenrispodun increased the level of PDE1A in both situations. In conclusion, we demonstrated that PDE1 inhibition may be therapeutically useful in reversing aspects of age-related VSMC dysfunction by potentiating NO-cGMP signaling, preserving microvascular function, and decreasing senescence. Yet, after chronic treatment, the effects of PDE1 inhibition might be counteracted by the interplay between differential PDE1A and C expression. These results warrant further pharmacodynamic profiling of PDE enzyme regulation during chronic PDE1 inhibitor treatment.

10.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630010

RESUMO

Aging leads to a loss of vasomotor control. Both vasodilation and vasoconstriction are affected. Decreased nitric oxide-cGMP-mediated relaxation is a hallmark of aging. It contributes to vascular disease, notably hypertension, infarction, and dementia. Decreased vasodilation can be caused by aging independently from cardiovascular risk factors. This process that can be mimicked in mice in an accelerated way by activation of the DNA damage response. Genetic deletion of the DNA repair enzyme ERCC1 endonuclease in mice, as in the case of Ercc1Δ/- mice, can be used as a tool to accelerate aging. Ercc1Δ/- mice develop age-dependent vasomotor dysfunction from two months after birth. In the present study we tested if chronic treatment with sildenafil, a phosphodiesterase 5 inhibitor that augments NO-cGMP signaling, can reduce the development of vasomotor dysfunction in Ercc1Δ/- mice. Ercc1Δ/- mice and wild-type littermates were treated with 10 mg/kg/d of sildenafil from the age of 6 to the age of 14 weeks. Blood pressure and in vivo and ex vivo vasomotor responses were measured at the end of the treatment period. Ercc1Δ/- mice developed decreased reactive hyperemia, and diminished NO-cGMP-dependent acetylcholine responses. The diminished acetylcholine response involved both endothelial and vascular smooth muscle cell signaling. Chronic sildenafil exclusively improved NO-cGMP signaling in VSMC, and had no effect on endothelium-derived hyperpolarization. Sildenafil also improved KCl hypocontractility in Ercc1Δ/- mice. All effects were blood pressure-independent. The findings might be of clinical importance for prevention of morbidities related to vascular aging as well as for progeria patients with a high risk of cardiovascular disease.


Assuntos
Envelhecimento/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Citrato de Sildenafila/farmacologia , Sistema Vasomotor/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Endotélio Vascular/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Vasoconstrição/efeitos dos fármacos
11.
Clin Sci (Lond) ; 134(7): 727-746, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32202295

RESUMO

We previously identified genomic instability as a causative factor for vascular aging. In the present study, we determined which vascular aging outcomes are due to local endothelial DNA damage, which was accomplished by genetic removal of ERCC1 (excision repair cross-complementation group 1) DNA repair in mice (EC-knockout (EC-KO) mice). EC-KO showed a progressive decrease in microvascular dilation of the skin, increased microvascular leakage in the kidney, decreased lung perfusion, and increased aortic stiffness compared with wild-type (WT). EC-KO showed expression of DNA damage and potential senescence marker p21 exclusively in the endothelium, as demonstrated in aorta. Also the kidney showed p21-positive cells. Vasodilator responses measured in organ baths were decreased in aorta, iliac and coronary artery EC-KO compared with WT, of which coronary artery was the earliest to be affected. Nitric oxide-mediated endothelium-dependent vasodilation was abolished in aorta and coronary artery, whereas endothelium-derived hyperpolarization and responses to exogenous nitric oxide (NO) were intact. EC-KO showed increased superoxide production compared with WT, as measured in lung tissue, rich in endothelial cells (ECs). Arterial systolic blood pressure (BP) was increased at 3 months, but normal at 5 months, at which age cardiac output (CO) was decreased. Since no further signs of cardiac dysfunction were detected, this decrease might be an adaptation to prevent an increase in BP. In summary, a selective DNA repair defect in the endothelium produces features of age-related endothelial dysfunction, largely attributed to loss of endothelium-derived NO. Increased superoxide generation might contribute to the observed changes affecting end organ perfusion, as demonstrated in kidney and lung.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/deficiência , Endonucleases/deficiência , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Fatores Etários , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Permeabilidade Capilar , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Células Endoteliais/patologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Superóxidos/metabolismo , Rigidez Vascular , Vasodilatação
12.
Cardiovasc Res ; 116(10): 1779-1790, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593221

RESUMO

AIMS: Although effective in preventing tumour growth, angiogenesis inhibitors cause off-target effects including cardiovascular toxicity and renal injury, most likely via endothelin (ET)-1 up-regulation. ET-1 via stimulation of the ETA receptor has pro-hypertensive actions whereas stimulation of the ETB receptor can elicit both pro- or anti-hypertensive effects. In this study, our aim was to determine the efficacy of selective ETA vs. dual ETA/B receptor blockade for the prevention of angiogenesis inhibitor-induced hypertension and albuminuria. METHODS AND RESULTS: Male Wistar Kyoto (WKY) rats were treated with vehicle, sunitinib (angiogenesis inhibitor; 14 mg/kg/day) alone or in combination with macitentan (ETA/B receptor antagonist; 30 mg/kg/day) or sitaxentan (selective ETA receptor antagonist; 30 or 100 mg/kg/day) for 8 days. Compared with vehicle, sunitinib treatment caused a rapid and sustained increase in mean arterial pressure of ∼25 mmHg. Co-treatment with macitentan or sitaxentan abolished the pressor response to sunitinib. Sunitinib did not induce endothelial dysfunction. However, it was associated with increased aortic, mesenteric, and renal oxidative stress, an effect that was absent in mesenteric arteries of the macitentan and sitaxentan co-treated groups. Albuminuria was greater in the sunitinib- than vehicle-treated group. Co-treatment with sitaxentan, but not macitentan, prevented this increase in albuminuria. Sunitinib treatment increased circulating and urinary prostacyclin levels and had no effect on thromboxane levels. These increases in prostacyclin were blunted by co-treatment with sitaxentan. CONCLUSIONS: Our results demonstrate that both selective ETA and dual ETA/B receptor antagonism prevents sunitinib-induced hypertension, whereas sunitinib-induced albuminuria was only prevented by selective ETA receptor antagonism. In addition, our results uncover a role for prostacyclin in the development of these effects. In conclusion, selective ETA receptor antagonism is sufficient for the prevention of sunitinib-induced hypertension and renal injury.


Assuntos
Albuminúria/prevenção & controle , Anti-Hipertensivos/farmacologia , Artérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Hipertensão/prevenção & controle , Albuminúria/induzido quimicamente , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Artérias/metabolismo , Artérias/fisiopatologia , Modelos Animais de Doenças , Epoprostenol/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Isoxazóis/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/fisiopatologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos Endogâmicos WKY , Receptor de Endotelina A/efeitos dos fármacos , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/efeitos dos fármacos , Receptor de Endotelina B/metabolismo , Transdução de Sinais , Sulfonamidas/farmacologia , Sunitinibe , Tiofenos/farmacologia
13.
J Hypertens ; 38(4): 755-764, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31790054

RESUMO

OBJECTIVES: Combined angiotensin receptor--neprilysin inhibition (ARNI) reduces glomerulosclerosis better than single angiotensin receptor blockade (ARB) in diabetic, hypertensive rats. The renoprotective mechanism remains unknown, but may depend on superior blood pressure control, improved renal hemodynamics, suppressed renal inflammation or prevention of podocyte loss. METHODS: To address this, TGR(mREN2)27 rats (a model of angiotensin II-dependent hypertension) were made diabetic for 12 weeks and treated with vehicle (n = 10), valsartan (ARB; n = 7) or sacubitril/valsartan (ARNI; n = 8) for the final 3 weeks. Arterial pressure was measured via radiotelemetry. RESULTS: Sacubitril/valsartan lowered mean arterial pressure by -50 ±â€Š4 mmHg and valsartan by -43 ±â€Š4 mmHg (P = 0.3). Both treatments lowered albuminuria, but only sacubitril/valsartan maintained high urinary atrial natriuretic peptide, improved glycemic control and protected podocyte integrity, reflected by increased nephrin expression and suppression of transient receptor potential canonical 6 and regulator of calcineurin 1. This resulted in markedly reduced glomerulosclerosis (P < 0.05 vs. control and valsartan). Despite higher effective renal plasma flow and glomerular filtration rates, sacubitril/valsartan did neither improve filtration fraction nor renal immune cell infiltration. CONCLUSION: Sacubitril/valsartan offers drug-class-specific renoprotection in a preclinical model of diabetes and hypertension. Renoprotection is unrelated to antihypertensive efficacy, renal hemodynamics or inflammation, but may be related to protective effects of natriuretic peptides on podocyte integrity.


Assuntos
Aminobutiratos/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Neprilisina/antagonistas & inibidores , Podócitos/efeitos dos fármacos , Tetrazóis/uso terapêutico , Valsartana/uso terapêutico , Aminobutiratos/farmacologia , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Anti-Hipertensivos/farmacologia , Compostos de Bifenilo , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus/patologia , Combinação de Medicamentos , Hipertensão/patologia , Masculino , Podócitos/patologia , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Ratos , Tetrazóis/farmacologia , Valsartana/farmacologia
14.
J Cardiothorac Surg ; 14(1): 200, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752946

RESUMO

BACKGROUND: Vasoplegia is a severe complication which may occur after cardiac surgery, particularly in patients with heart failure. It is a result of activation of vasodilator pathways, inactivation of vasoconstrictor pathways and the resistance to vasopressors. However, the precise etiology remains unclear. The aim of the Vasoresponsiveness in patients with heart failure (VASOR) study is to objectify and characterize the altered vasoresponsiveness in patients with heart failure, before, during and after heart failure surgery and to identify the etiological factors involved. METHODS: This is a prospective, observational study conducted at Leiden University Medical Center. Patients with and patients without heart failure undergoing cardiac surgery on cardiopulmonary bypass are enrolled. The study is divided in two inclusion phases. During phase 1, 18 patients with and 18 patients without heart failure are enrolled. The vascular reactivity in response to a vasoconstrictor (phenylephrine) and a vasodilator (nitroglycerin) is assessed in vivo on different timepoints. The response to phenylephrine is assessed on t1 (before induction), t2 (before induction, after start of cardiotropic drugs and/or vasopressors), t3 (after induction), t4 (15 min after cessation of cardiopulmonary bypass) and t5 (1 day post-operatively). The response to nitroglycerin is assessed on t1 and t5. Furthermore, a sample of pre-pericardial fat tissue, containing resistance arteries, is collected intraoperatively. The ex vivo vascular reactivity is assessed by constructing concentrations response curves to various vasoactive substances using isolated resistance arteries. Next, expression of signaling proteins and receptors is assessed using immunohistochemistry and mRNA analysis. Furthermore, the groups are compared with respect to levels of organic compounds that can influence the cardiovascular system (e.g. copeptin, (nor)epinephrine, ANP, BNP, NTproBNP, angiotensin II, cortisol, aldosterone, renin and VMA levels). During inclusion phase 2, only the ex vivo vascular reactivity test is performed in patients with (N = 12) and without heart failure (N = 12). DISCUSSION: Understanding the difference in vascular responsiveness between patients with and without heart failure in detail, might yield therapeutic options or development of preventive strategies for vasoplegia, leading to safer surgical interventions and improvement in outcome. TRIAL REGISTRATION: The Netherlands Trial Register (NTR), NTR5647. Registered 26 January 2016.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Insuficiência Cardíaca/cirurgia , Complicações Pós-Operatórias/etiologia , Vasodilatação/fisiologia , Vasoplegia/etiologia , Feminino , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/fisiopatologia , Estudos Prospectivos , Vasoplegia/fisiopatologia , Vasoplegia/prevenção & controle
15.
EBioMedicine ; 45: 447-455, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31204276

RESUMO

BACKGROUND: The phosphodiesterase-5 inhibitor (PDE5) sildenafil has emerged as a promising treatment for preeclampsia (PE). However, a sildenafil trial was recently halted due to lack of effect and increased neonatal morbidity. METHODS: Ex vivo dual-sided perfusion of an isolated cotyledon and wire-myography on chorionic plate arteries were performed to study the effects of sildenafil and the non-selective PDE inhibitor vinpocetine on the response to the NO donor sodium nitroprusside (SNP) under healthy and PE conditions. Ex vivo perfusion was also used to study placental transfer of sildenafil in 6 healthy and 2 PE placentas. Furthermore, placental mRNA and protein levels of eNOS, iNOS, PDE5 and PDE1 were quantified. FINDINGS: Sildenafil and vinpocetine significantly enhanced SNP responses in chorionic plate arteries of healthy, but not PE placentas. Only sildenafil acutely decreased baseline tension in arteries of both healthy and PE placentas. At steady state, the foetal-to-maternal transfer ratio of sildenafil was 0·37 ±â€¯0·03 in healthy placentas versus 0·66 and 0·47 in the 2 PE placentas. mRNA and protein levels of PDE5, eNOS and iNOS were comparable in both groups, while PDE1 levels were lower in PE. INTERPRETATION: The absence of sildenafil-induced NO potentiation in arteries of PE placentas, combined with the non-PDE-mediated effects of sildenafil and the lack of PDE5 upregulation in PE, argue against sildenafil as the preferred drug of use in PE. Moreover, increased placental transfer of sildenafil in PE might underlie the neonatal morbidity in the STRIDER trial. FUND: This study was funded by an mRACE Erasmus MC grant.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Inibidores da Fosfodiesterase 5/administração & dosagem , Pré-Eclâmpsia/tratamento farmacológico , Citrato de Sildenafila/administração & dosagem , Adulto , GMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Feminino , Humanos , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo II/genética , Inibidores da Fosfodiesterase 5/metabolismo , Placenta/efeitos dos fármacos , Placenta/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Gravidez , RNA Mensageiro/genética , Citrato de Sildenafila/metabolismo , Vasodilatação/efeitos dos fármacos , Alcaloides de Vinca/administração & dosagem , Alcaloides de Vinca/metabolismo
16.
J Headache Pain ; 20(1): 47, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053059

RESUMO

BACKGROUND: Racemic isometheptene [(RS)-isometheptene] is an antimigraine drug that due to its cardiovascular side-effects was separated into its enantiomers, (R)- and (S)-isometheptene. This study set out to characterize the contribution of each enantiomer to its vasoactive profile. Moreover, rat neurogenic dural vasodilatation was used to explore their antimigraine mechanism of action. METHODS: Human blood vessel segments (middle meningeal artery, proximal and distal coronary arteries, and saphenous vein) were mounted in organ baths and concentration response curves to isometheptene were constructed. Calcitonin gene-related peptide (CGRP)-induced neurogenic dural vasodilation was elicited in the presence of the enantiomers using a rat closed cranial window model. RESULTS: The isometheptene enantiomers did not induce any significant contraction in human blood vessels, except in the middle meningeal artery, when they were administered at the highest concentration (100 µM). Interestingly in rats, (S)-isometheptene induced more pronounced vasopressor responses than (R)-isometheptene. However, none of these compounds affected the CGRP-induced vasodilator responses. CONCLUSION: The isometheptene enantiomers displayed a relatively safe peripheral vascular profile, as they failed to constrict the human coronary artery. These compounds do not appear to modulate neurogenic dural CGRP release, therefore, their antimigraine site of action remains to be determined.


Assuntos
Vasos Coronários/efeitos dos fármacos , Artérias Meníngeas/efeitos dos fármacos , Metilaminas/farmacologia , Transtornos de Enxaqueca , Veia Safena/efeitos dos fármacos , Adulto , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Vasos Coronários/fisiologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Artérias Meníngeas/fisiologia , Metilaminas/química , Metilaminas/uso terapêutico , Pessoa de Meia-Idade , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/fisiopatologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Veia Safena/fisiologia , Estereoisomerismo , Vasoconstritores/química , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/química , Vasodilatadores/farmacologia
17.
Hypertension ; 73(6): 1249-1257, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31030610

RESUMO

Small interfering RNAs (siRNAs) targeting hepatic angiotensinogen ( Agt) may provide long-lasting antihypertensive effects, but the optimal approach remains unclear. Here, we assessed the efficacy of a novel AGT siRNA in spontaneously hypertensive rats. Rats were treated with vehicle, siRNA (10 mg/kg fortnightly; subcutaneous), valsartan (31 mg/kg per day; oral), captopril (100 mg/kg per day; oral), valsartan+siRNA, or captopril+valsartan for 4 weeks (all groups, n=8). Mean arterial pressure (recorded via radiotelemetry) was lowered the most by valsartan+siRNA (-68±4 mm Hg), followed by captopril+valsartan (-54±4 mm Hg), captopril (-23±2 mm Hg), siRNA (-14±2 mm Hg), and valsartan (-10±2 mm Hg). siRNA and captopril monotherapies improved cardiac hypertrophy equally, but less than the dual therapies, which also lowered NT-proBNP (N-terminal pro-B-type natriuretic peptide). Glomerular filtration rate, urinary NGAL (neutrophil gelatinase-associated lipocalin), and albuminuria were unaffected by treatment. siRNA lowered circulating AGT by 97.9±1.0%, and by 99.8±0.1% in combination with valsartan. Although siRNA greatly reduced renal Ang (angiotensin) I, only valsartan+siRNA suppressed circulating and renal Ang II. This coincided with decreased renal sodium hydrogen exchanger type 3 and phosphorylated sodium chloride cotransporter abundances. Renin and plasma K+ increased with every treatment, but especially during valsartan+siRNA; no effects on aldosterone were observed. Collectively, these data indicate that Ang II elimination requires >99% suppression of circulating AGT. Maximal blockade of the renin-angiotensin system, achieved by valsartan+siRNA, yielded the greatest reduction in blood pressure and cardiac hypertrophy, whereas AGT lowering alone was as effective as conventional renin-angiotensin system inhibitors. Given its stable and sustained efficacy, lasting weeks, RNA interference may offer a unique approach to improving therapy adherence and treating hypertension.


Assuntos
Angiotensinogênio/genética , Pressão Sanguínea/fisiologia , Regulação da Expressão Gênica , Hipertensão/tratamento farmacológico , Fígado/metabolismo , RNA Interferente Pequeno/administração & dosagem , Angiotensinogênio/biossíntese , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão/genética , Hipertensão/metabolismo , Injeções Subcutâneas , Masculino , RNA/genética , RNA Interferente Pequeno/farmacocinética , Ratos , Ratos Endogâmicos SHR
18.
J Headache Pain ; 19(1): 41, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802484

RESUMO

BACKGROUND: Migraine is considered a neurovascular disorder, but its pathophysiological mechanisms are not yet fully understood. Adenosine has been shown to increase in plasma during migraine attacks and to induce vasodilation in several blood vessels; however, it remains unknown whether adenosine can interact with the trigeminovascular system. Moreover, caffeine, a non-selective adenosine receptor antagonist, is included in many over the counter anti-headache/migraine treatments. METHODS: This study used the rat closed cranial window method to investigate in vivo the effects of the adenosine A2A receptor antagonists with varying selectivity over A1 receptors; JNJ-39928122, JNJ-40529749, JNJ-41942914, JNJ-40064440 or JNJ-41501798 (0.3-10 mg/kg) on the vasodilation of the middle meningeal artery produced by either CGS21680 (an adenosine A2A receptor agonist) or endogenous CGRP (released by periarterial electrical stimulation). RESULTS: Regarding the dural meningeal vasodilation produced neurogenically or pharmacologically, all JNJ antagonists: (i) did not affect neurogenic vasodilation but (ii) blocked the vasodilation produced by CGS21680, with a blocking potency directly related to their additional affinity for the adenosine A1 receptor. CONCLUSIONS: These results suggest that vascular adenosine A2A (and, to a certain extent, also A1) receptors mediate the CGS21680-induced meningeal vasodilation. These receptors do not appear to modulate prejunctionally the sensory release of CGRP. Prevention of meningeal arterial dilation might be predictive for anti-migraine drugs, and since none of these JNJ antagonists modified per se blood pressure, selective A2A receptor antagonism may offer a novel approach to antimigraine therapy which remains to be investigated in clinical trials.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Adenosina/análogos & derivados , Artérias Meníngeas/efeitos dos fármacos , Transtornos de Enxaqueca/tratamento farmacológico , Fenetilaminas/farmacologia , Vasodilatação/efeitos dos fármacos , Adenosina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Masculino , Transtornos de Enxaqueca/fisiopatologia , Ratos , Ratos Sprague-Dawley
19.
Eur J Pharmacol ; 827: 112-116, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29550336

RESUMO

Protein kinase G (PKG) Iα mediates the cyclic guanosine monophosphate-mediated vasodilatory effects induced by NO. Endothelium-derived hyperpolarizing factors (EDHFs), like H2O2 can activate PKGIα in a cyclic guanosine monophosphate-independent manner, but whether this is true for all EDHFs (e.g., S-nitrosothiols) is unknown. Here, we investigated the contribution of PKGIα to bradykinin-, H2O2-, L-S-nitrosocysteine-, and light-induced relaxation in porcine coronary arteries, making use of the fact that thioredoxin reductase inhibition with auranofin or 1-chloro-2,4-dinitrobenzene potentiates PKGIα. Thioredoxin reductase inhibition potentiated bradykinin and H2O2, but not L-S-nitrosocysteine or light. The relaxations by the latter 2 and bradykinin, but not those by H2O2, were prevented by the soluble guanylyl cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Yet, after S-nitrosothiol depletion with ethacrynic acid, thioredoxin reductase inhibition also potentiated light-induced relaxation, and this was prevented by the Na+-K+ ATPase inhibitor ouabain. This indicates that photorelaxation depends on sGC activation by S-nitrosothiols, while only after S-nitrosothiol depletion oxidized PKGIα comes into play, and acts via Na+-K+ ATPase. In conclusion, both bradykinin- and light-induced relaxation of porcine coronary arteries depend, at least partially, on oxidized PKGIα, and this does not involve sGC. H2O2 also acts via oxidized PKGIα in an sGC-independent manner. Yet, S-nitrosothiol-induced relaxation is PKGIα-independent. Clearly, PKG activation does not contribute universally to all EDHF responses, and targeting PKGIα may only mimick EDHF under certain conditions. It is therefore unlikely that PKGIα activators will be universal vasodilators.


Assuntos
Fatores Biológicos/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , S-Nitrosotióis/farmacologia , Animais , Ativação Enzimática/efeitos dos fármacos , Suínos
20.
Eur J Pharmacol ; 824: 128-132, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29432709

RESUMO

Increasing the degree of renin-angiotensin system (RAS) blockade by combining ≥2 RAS blockers marginally increases efficacy, but results in more side effects. Hence, interference with other systems is currently being investigated, like potentiation of natriuretic peptides with neprilysin inhibitors. However, the neprilysin inhibitor thiorphan was recently found to increase endothelin-1 when administered to TGR(mREN2)27 (Ren2) rats on top of RAS blockade. Here we investigated whether this effect is thiorphan-specific, by comparing the neprilysin inhibitors thiorphan and sacubitril, administered by osmotic minipumps at a low or high dose for 7 days, in Ren2 rats. Plasma and urinary levels of endothelin-1, atrial and brain natriuretic peptide (ANP, BNP) and their second messenger cyclic guanosine 3'5' monophosphate (cGMP) were monitored. No significant differences were found in the plasma concentrations of endothelin-1, cGMP, ANP and BNP after treatment, although plasma ANP tended to be higher in the high-dose thiorphan treatment group and the low- and high-dose sacubitril treatment groups, compared with vehicle. Urinary endothelin-1 increased in the low-dose thiorphan and high-dose sacubitril groups, compared with baseline, although significance was reached for the former only. Urinary cGMP rose significantly in the high-dose sacubitril treatment group compared with baseline. Both urinary endothelin-1 and cGMP were significantly higher in the high-dose sacubitril group compared with the low-dose sacubitril group. In conclusion, endothelin-1 upregulation occurs with both thiorphan and sacubitril, and is particularly apparent in neprilysin-rich organs like the kidney. High renal neprilysin levels most likely also explain why sacubitril increased cGMP in urine only.


Assuntos
Endotelina-1/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Neprilisina/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Aminobutiratos/farmacologia , Animais , Compostos de Bifenilo , Combinação de Medicamentos , Ratos , Tetrazóis/farmacologia , Tiorfano/farmacologia , Valsartana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA