Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Res ; 57(1): 14, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570874

RESUMO

Galectins are soluble glycan-binding proteins that interact with a wide range of glycoproteins and glycolipids and modulate a broad spectrum of physiological and pathological processes. The expression and subcellular localization of different galectins vary among tissues and cell types and change during processes of tissue repair, fibrosis and cancer where epithelial cells loss differentiation while acquiring migratory mesenchymal phenotypes. The epithelial-mesenchymal transition (EMT) that occurs in the context of these processes can include modifications of glycosylation patterns of glycolipids and glycoproteins affecting their interactions with galectins. Moreover, overexpression of certain galectins has been involved in the development and different outcomes of EMT. This review focuses on the roles and mechanisms of Galectin-1 (Gal-1), Gal-3, Gal-4, Gal-7 and Gal-8, which have been involved in physiologic and pathogenic EMT contexts.


Assuntos
Galectinas , Neoplasias , Humanos , Galectinas/genética , Galectinas/metabolismo , Fibrose , Glicoproteínas , Transição Epitelial-Mesenquimal , Glicolipídeos
2.
J Alzheimers Dis ; 84(4): 1391-1414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719499

RESUMO

Alzheimer's disease (AD) is characterized by cognitive impairment and the presence of neurofibrillary tangles and senile plaques in the brain. Neurofibrillary tangles are composed of hyperphosphorylated tau, while senile plaques are formed by amyloid-ß (Aß) peptide. The amyloid hypothesis proposes that Aß accumulation is primarily responsible for the neurotoxicity in AD. Multiple Aß-mediated toxicity mechanisms have been proposed including mitochondrial dysfunction. However, it is unclear if it precedes Aß accumulation or if is a consequence of it. Aß promotes mitochondrial failure. However, amyloid ß precursor protein (AßPP) could be cleaved in the mitochondria producing Aß peptide. Mitochondrial-produced Aß could interact with newly formed ones or with Aß that enter the mitochondria, which may induce its oligomerization and contribute to further mitochondrial alterations, resulting in a vicious cycle. Another explanation for AD is the tau hypothesis, in which modified tau trigger toxic effects in neurons. Tau induces mitochondrial dysfunction by indirect and apparently by direct mechanisms. In neurons mitochondria are classified as non-synaptic or synaptic according to their localization, where synaptic mitochondrial function is fundamental supporting neurotransmission and hippocampal memory formation. Here, we focus on synaptic mitochondria as a primary target for Aß toxicity and/or formation, generating toxicity at the synapse and contributing to synaptic and memory impairment in AD. We also hypothesize that phospho-tau accumulates in mitochondria and triggers dysfunction. Finally, we discuss that synaptic mitochondrial dysfunction occur in aging and correlates with age-related memory loss. Therefore, synaptic mitochondrial dysfunction could be a predisposing factor for AD or an early marker of its onset.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Sinapses/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Transtornos da Memória/patologia , Emaranhados Neurofibrilares , Neurônios/metabolismo , Placa Amiloide
3.
J Periodontal Res ; 55(5): 724-733, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32449990

RESUMO

BACKGROUND AND OBJECTIVE: During cyclosporine-induced gingival overgrowth, the homeostatic balance of gingival connective tissue is disrupted leading to fibrosis. Galectins are glycan-binding proteins that can modulate a variety of cellular processes including fibrosis in several organs. Here, we study the role of galectin-8 (Gal-8) in the response of gingival connective tissue cells to cyclosporine. METHODS: We used human gingival fibroblasts and mouse NIH3T3 cells treated with recombinant Gal-8 and/or cyclosporine for analyzing specific mRNA and protein levels through immunoblot, real-time polymerase chain reaction, ELISA and immunofluorescence, pull-down with Gal-8-Sepharose for Gal-8-to-cell surface glycoprotein interactions, short hairpin RNA for Gal-8 silencing and Student's t test and ANOVA for statistical analysis. RESULTS: Galectin-8 stimulated type I collagen and fibronectin protein levels and potentiated CTGF protein levels in TGF-ß1-stimulated human gingival fibroblasts. Gal-8 interacted with α5ß1-integrin and type II TGF-ß receptor. Gal-8 stimulated fibronectin protein and mRNA levels, and this response was dependent on FAK activity but not Smad2/3 signaling. Cyclosporine and tumor necrosis factor alpha (TNF-α) increased Gal-8 protein levels. Finally, silencing of galectin-8 in NIH3T3 cells abolished cyclosporine-induced fibronectin protein levels. CONCLUSION: Taken together, these results reveal for the first time Gal-8 as a fibrogenic stimulus exerted through ß1-integrin/FAK pathways in human gingival fibroblasts, which can be triggered by cyclosporine. Further studies should explore the involvement of Gal-8 in human gingival tissues and its role in drug-induced gingival overgrowth.


Assuntos
Ciclosporina , Crescimento Excessivo da Gengiva , Animais , Células Cultivadas , Ciclosporina/toxicidade , Fibroblastos , Galectinas , Gengiva , Crescimento Excessivo da Gengiva/induzido quimicamente , Humanos , Camundongos , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA