Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2126, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746999

RESUMO

Both the identity and the amount of a carbon source present in laboratory or industrial cultivation media have major impacts on the growth and physiology of a microbial species. In the case of the yeast Saccharomyces cerevisiae, sucrose is arguably the most important sugar used in industrial biotechnology, whereas glucose is the most common carbon and energy source used in research, with many well-known and described regulatory effects, e.g. glucose repression. Here we compared the label-free proteomes of exponentially growing S. cerevisiae cells in a defined medium containing either sucrose or glucose as the sole carbon source. For this purpose, bioreactor cultivations were employed, and three different strains were investigated, namely: CEN.PK113-7D (a common laboratory strain), UFMG-CM-Y259 (a wild isolate), and JP1 (an industrial bioethanol strain). These strains present different physiologies during growth on sucrose; some of them reach higher specific growth rates on this carbon source, when compared to growth on glucose, whereas others display the opposite behavior. It was not possible to identify proteins that commonly presented either higher or lower levels during growth on sucrose, when compared to growth on glucose, considering the three strains investigated here, except for one protein, named Mnp1-a mitochondrial ribosomal protein of the large subunit, which had higher levels on sucrose than on glucose, for all three strains. Interestingly, following a Gene Ontology overrepresentation and KEGG pathway enrichment analyses, an inverse pattern of enriched biological functions and pathways was observed for the strains CEN.PK113-7D and UFMG-CM-Y259, which is in line with the fact that whereas the CEN.PK113-7D strain grows faster on glucose than on sucrose, the opposite is observed for the UFMG-CM-Y259 strain.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Glucose/metabolismo , Sacarose/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Proteomics ; 261: 104576, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35351659

RESUMO

The importance of obtaining comprehensive and accurate information from cellular proteomics experiments asks for a systematic investigation of sample preparation protocols. In particular when working with unicellular organisms with strong cell walls, such as found in the model organism and cell factory Saccharomyces cerevisiae. Here, we performed a systematic comparison of sample preparation protocols using a matrix of different conditions commonly applied in whole cell lysate, bottom-up proteomics experiments. The different protocols were evaluated for their overall fraction of identified spectra, proteome and amino acid sequence coverage, GO-term distribution and number of peptide modifications, by employing a combination of database and unrestricted modification search approaches. Ultimately, the best protocols enabled the identification of approximately 65-70% of all acquired fragmentation spectra, where additional de novo sequencing suggests that unidentified spectra were largely of too low spectral quality to provide confident spectrum matches. Generally, a range of peptide modifications could be linked to solvents, additives as well as filter materials. Most importantly, the use of moderate incubation temperatures and times circumvented excessive formation of modification artefacts. The collected protocols and large sets of mass spectrometric raw data provide a resource to evaluate and design new protocols and guide the analysis of (native) peptide modifications. SIGNIFICANCE: The single-celled eukaryote yeast is a widely used model organism for higher eukaryotes in which, for example, the regulation of glycolysis is studied in the context of health and disease. Moreover, yeast is a widely employed cell factory because it is one of the few eukaryotic organisms that can efficiently grow under both aerobic and anaerobic conditions. Large-scale proteomics studies have become increasingly important for single-celled model organisms, such as yeast, in order to provide fundamental understanding of their metabolic processes and proteome dynamics under changing environmental conditions. However, comprehensive and accurate cellular proteomics experiments require optimised sample preparation procedures, in particular when working with unicellular organisms with rigid cell walls, such as found in yeast. Protocols may substantially bias towards specific protein fractions, modify native protein modifications or introduce artificial modifications. That lowers the overall number of spectral identifications and challenges the study of native protein modifications. Therefore, we performed a systematic study of a large array of protocols on yeast grown under highly controlled conditions. The obtained outcomes, the collected protocols and the mass spectrometric raw data enable the selection of suitable sample preparation elements and furthermore support the evaluation of (native) peptide modifications in yeast, and beyond.


Assuntos
Proteoma , Saccharomyces cerevisiae , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem/métodos
3.
ACS Synth Biol ; 9(6): 1361-1375, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32413257

RESUMO

The construction of powerful cell factories requires intensive and extensive remodelling of microbial genomes. Considering the rapidly increasing number of these synthetic biology endeavors, there is an increasing need for DNA watermarking strategies that enable the discrimination between synthetic and native gene copies. While it is well documented that codon usage can affect translation, and most likely mRNA stability in eukaryotes, remarkably few quantitative studies explore the impact of watermarking on transcription, protein expression, and physiology in the popular model and industrial yeast Saccharomyces cerevisiae. The present study, using S. cerevisiae as eukaryotic paradigm, designed, implemented, and experimentally validated a systematic strategy to watermark DNA with minimal alteration of yeast physiology. The 13 genes encoding proteins involved in the major pathway for sugar utilization (i.e., glycolysis and alcoholic fermentation) were simultaneously watermarked in a yeast strain using the previously published pathway swapping strategy. Carefully swapping codons of these naturally codon optimized, highly expressed genes, did not affect yeast physiology and did not alter transcript abundance, protein abundance, and protein activity besides a mild effect on Gpm1. The markerQuant bioinformatics method could reliably discriminate native from watermarked genes and transcripts. Furthermore, presence of watermarks enabled selective CRISPR/Cas genome editing, specifically targeting the native gene copy while leaving the synthetic, watermarked variant intact. This study offers a validated strategy to simply watermark genes in S. cerevisiae.


Assuntos
DNA/química , RNA/química , Biologia Sintética/métodos , Sequência de Bases , Sistemas CRISPR-Cas/genética , Edição de Genes , Glicólise/genética , Projetos de Pesquisa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
FEMS Yeast Res ; 20(1)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31860055

RESUMO

Mass spectrometry-based proteomics has become a constitutional part of the multi-omics toolbox in yeast research, advancing fundamental knowledge of molecular processes and guiding decisions in strain and product developmental pipelines. Nevertheless, post-translational protein modifications (PTMs) continue to challenge the field of proteomics. PTMs are not directly encoded in the genome; therefore, they require a sensitive analysis of the proteome itself. In yeast, the relevance of post-translational regulators has already been established, such as for phosphorylation, which can directly affect the reaction rates of metabolic enzymes. Whereas, the selective analysis of single modifications has become a broadly employed technique, the sensitive analysis of a comprehensive set of modifications still remains a challenge. At the same time, a large number of fragmentation spectra in a typical shot-gun proteomics experiment remain unidentified. It has been estimated that a good proportion of those unidentified spectra originates from unexpected modifications or natural peptide variants. In this review, recent advancements in microbial proteomics for unrestricted protein modification discovery are reviewed, and recent research integrating this additional layer of information to elucidate protein interaction and regulation in yeast is briefly discussed.


Assuntos
Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem
5.
Nucleic Acids Res ; 45(21): 12585-12598, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106617

RESUMO

Cpf1 is a new class II family of CRISPR-Cas RNA-programmable endonucleases with unique features that make it a very attractive alternative or complement to Cas9 for genome engineering. Using constitutively expressed Cpf1 from Francisella novicida, the present study demonstrates that FnCpf1 can mediate RNA-guided DNA cleavage at targeted genomic loci in the popular model and industrial yeast Saccharomyces cerevisiae. FnCpf1 very efficiently and precisely promoted repair DNA recombination with efficiencies up to 100%. Furthermore, FnCpf1 was shown to introduce point mutations with high fidelity. While editing multiple loci with Cas9 is hampered by the need for multiple or complex expression constructs, processing itself a customized CRISPR array FnCpf1 was able to edit four genes simultaneously in yeast with a 100% efficiency. A remarkable observation was the unexpected, strong preference of FnCpf1 to cleave DNA at target sites harbouring 5'-TTTV-3' PAM sequences, a motif reported to be favoured by Cpf1 homologs of Acidaminococcus and Lachnospiraceae. The present study supplies several experimentally tested guidelines for crRNA design, as well as plasmids for FnCpf1 expression and easy construction of crRNA expression cassettes in S. cerevisiae. FnCpf1 proves to be a powerful addition to S. cerevisiae CRISPR toolbox.


Assuntos
Sistemas CRISPR-Cas , Endodesoxirribonucleases/metabolismo , Edição de Genes , Saccharomyces cerevisiae/genética , Endodesoxirribonucleases/genética , Francisella/enzimologia , Genoma Fúngico , Mutação Puntual , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA