Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Nat Commun ; 15(1): 3311, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632224

RESUMO

Inducible gene expression systems can be used to control the expression of a gene of interest by means of a small-molecule. One of the most common designs involves engineering a small-molecule responsive transcription factor (TF) and its cognate promoter, which often results in a compromise between minimal uninduced background expression (leakiness) and maximal induced expression. Here, we focus on an alternative strategy using quantitative synthetic biology to mitigate leakiness while maintaining high expression, without modifying neither the TF nor the promoter. Through mathematical modelling and experimental validations, we design the CASwitch, a mammalian synthetic gene circuit based on combining two well-known network motifs: the Coherent Feed-Forward Loop (CFFL) and the Mutual Inhibition (MI). The CASwitch combines the CRISPR-Cas endoribonuclease CasRx with the state-of-the-art Tet-On3G inducible gene system to achieve high performances. To demonstrate the potentialities of the CASwitch, we apply it to three different scenarios: enhancing a whole-cell biosensor, controlling expression of a toxic gene and inducible production of Adeno-Associated Virus (AAV) vectors.


Assuntos
Regulação da Expressão Gênica , Genes Sintéticos , Animais , Fatores de Transcrição/genética , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Mamíferos/genética , Sistemas CRISPR-Cas
2.
Hepatology ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37729391

RESUMO

BACKGROUND AND AIMS: Hepatoblastoma (HB) is the predominant form of pediatric liver cancer, though it remains exceptionally rare. While treatment outcomes for children with HB have improved, patients with advanced tumors face limited therapeutic choices. Additionally, survivors often suffer from long-term adverse effects due to treatment, including ototoxicity, cardiotoxicity, delayed growth, and secondary tumors. Consequently, there is a pressing need to identify new and effective therapeutic strategies for patients with HB. Computational methods to predict drug sensitivity from a tumor's transcriptome have been successfully applied for some common adult malignancies, but specific efforts in pediatric cancers are lacking because of the paucity of data. APPROACH AND RESULTS: In this study, we used DrugSense to assess drug efficacy in patients with HB, particularly those with the aggressive C2 subtype associated with poor clinical outcomes. Our method relied on publicly available collections of pan-cancer transcriptional profiles and drug responses across 36 tumor types and 495 compounds. The drugs predicted to be most effective were experimentally validated using patient-derived xenograft models of HB grown in vitro and in vivo. We thus identified 2 cyclin-dependent kinase 9 inhibitors, alvocidib and dinaciclib as potent HB growth inhibitors for the high-risk C2 molecular subtype. We also found that in a cohort of 46 patients with HB, high cyclin-dependent kinase 9 tumor expression was significantly associated with poor prognosis. CONCLUSIONS: Our work proves the usefulness of computational methods trained on pan-cancer data sets to reposition drugs in rare pediatric cancers such as HB, and to help clinicians in choosing the best treatment options for their patients.

3.
Genome Biol ; 24(1): 177, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528411

RESUMO

BACKGROUND: RNA profiling technologies at single-cell resolutions, including single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, scnRNA-seq for short), can help characterize the composition of tissues and reveal cells that influence key functions in both healthy and disease tissues. However, the use of these technologies is operationally challenging because of high costs and stringent sample-collection requirements. Computational deconvolution methods that infer the composition of bulk-profiled samples using scnRNA-seq-characterized cell types can broaden scnRNA-seq applications, but their effectiveness remains controversial. RESULTS: We produced the first systematic evaluation of deconvolution methods on datasets with either known or scnRNA-seq-estimated compositions. Our analyses revealed biases that are common to scnRNA-seq 10X Genomics assays and illustrated the importance of accurate and properly controlled data preprocessing and method selection and optimization. Moreover, our results suggested that concurrent RNA-seq and scnRNA-seq profiles can help improve the accuracy of both scnRNA-seq preprocessing and the deconvolution methods that employ them. Indeed, our proposed method, Single-cell RNA Quantity Informed Deconvolution (SQUID), which combines RNA-seq transformation and dampened weighted least-squares deconvolution approaches, consistently outperformed other methods in predicting the composition of cell mixtures and tissue samples. CONCLUSIONS: We showed that analysis of concurrent RNA-seq and scnRNA-seq profiles with SQUID can produce accurate cell-type abundance estimates and that this accuracy improvement was necessary for identifying outcomes-predictive cancer cell subclones in pediatric acute myeloid leukemia and neuroblastoma datasets. These results suggest that deconvolution accuracy improvements are vital to enabling its applications in the life sciences.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Criança , Humanos , RNA-Seq , Perfilação da Expressão Gênica/métodos , RNA Interferente Pequeno , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
4.
BMC Genomics ; 24(1): 206, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072692

RESUMO

BACKGROUND: Inherited retinal diseases (IRD) are genetically heterogeneous disorders that cause the dysfunction or loss of photoreceptor cells and ultimately lead to blindness. To date, next-generation sequencing procedures fail to detect pathogenic sequence variants in coding regions of known IRD disease genes in about 30-40% of patients. One of the possible explanations for this missing heritability is the presence of yet unidentified transcripts of known IRD genes. Here, we aimed to define the transcript composition of IRD genes in the human retina by a meta-analysis of publicly available RNA-seq datasets using an ad-hoc designed pipeline. RESULTS: We analysed 218 IRD genes and identified 5,054 transcripts, 3,367 of which were not previously reported. We assessed their putative expression levels and focused our attention on 435 transcripts predicted to account for at least 5% of the expression of the corresponding gene. We looked at the possible impact of the newly identified transcripts at the protein level and experimentally validated a subset of them. CONCLUSIONS: This study provides an unprecedented, detailed overview of the complexity of the human retinal transcriptome that can be instrumental in contributing to the resolution of some cases of missing heritability in IRD patients.


Assuntos
Doenças Retinianas , Transcriptoma , Humanos , Retina/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/diagnóstico , Doenças Retinianas/metabolismo , Mutação
5.
Br J Pharmacol ; 180(6): 775-785, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36444690

RESUMO

BACKGROUND AND PURPOSE: Pharmacological inhibitors of TMEM16A (ANO1), a Ca2+ -activated Cl- channel, are important tools of research and possible therapeutic agents acting on smooth muscle, airway epithelia and cancer cells. We tested a panel of TMEM16A inhibitors, including CaCCinh -A01, niclosamide, MONNA, Ani9 and niflumic acid, to evaluate their possible effect on intracellular Ca2+ . EXPERIMENTAL APPROACH: We recorded cytosolic Ca2+ increase elicited with UTP, ionomycin or IP3 uncaging. KEY RESULTS: Unexpectedly, we found that all compounds, except for Ani9, markedly decreased intracellular Ca2+ elevation induced by stimuli acting on intracellular Ca2+ stores. These effects were similarly observed in cells with and without TMEM16A expression. We investigated in more detail the mechanism of action of niclosamide and CaCCinh -A01. Acute addition of niclosamide directly increased intracellular Ca2+ , an activity consistent with inhibition of the SERCA pump. In contrast to niclosamide, CaCCinh -A01 did not elevate intracellular Ca2+ , thus implying a different mechanism of action, possibly a block of inositol triphosphate receptors. CONCLUSIONS AND IMPLICATIONS: Most TMEM16A inhibitors are endowed with indirect effects mediated by alteration of intracellular Ca2+ handling, which may in part preclude their use as TMEM16A research tools.


Assuntos
Cálcio , Canais de Cloreto , Cálcio/metabolismo , Anoctamina-1/metabolismo , Niclosamida/farmacologia , Sinalização do Cálcio
7.
Commun Biol ; 5(1): 1034, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175545

RESUMO

Microfluidic-based cell culture allows for precise spatio-temporal regulation of microenvironment, live cell imaging and better recapitulation of physiological conditions, while minimizing reagents' consumption. Despite their usefulness, most microfluidic systems are designed with one specific application in mind and usually require specialized equipment and expertise for their operation. All these requirements prevent microfluidic-based cell culture to be widely adopted. Here, we designed and implemented a versatile and easy-to-use perfusion cell culture microfluidic platform for multiple applications (VersaLive) requiring only standard pipettes. Here, we showcase the multiple uses of VersaLive (e.g., time-lapse live cell imaging, immunostaining, cell recovery, cell lysis, plasmid transfection) in mammalian cell lines and primary cells. VersaLive could replace standard cell culture formats in several applications, thus decreasing costs and increasing reproducibility across laboratories. The layout, documentation and protocols are open-source and available online at https://versalive.tigem.it/ .


Assuntos
Microfluídica , Nomes , Animais , Técnicas de Cultura de Células , Mamíferos , Reprodutibilidade dos Testes
8.
iScience ; 25(2): 103756, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35128356

RESUMO

The Wnt/ß-catenin pathway is involved in development, cancer, and embryonic stem cell (ESC) maintenance; its dual role in stem cell self-renewal and differentiation is still controversial. Here, by applying an in vitro system enabling inducible gene expression control, we report that moderate induction of transcriptionally active exogenous ß-catenin in ß-catenin null mouse ESCs promotes epiblast-like cell (EpiLC) derivation in vitro. Instead, in wild-type cells, moderate chemical pre-activation of the Wnt/ß-catenin pathway promotes EpiLC in vitro derivation. Finally, we suggest that moderate ß-catenin levels in ß-catenin null mouse ESCs favor early stem cell commitment toward mesoderm if the exogenous protein is induced only in the "ground state" of pluripotency condition, or endoderm if the induction is maintained during the differentiation. Overall, our results confirm previous findings about the role of ß-catenin in pluripotency and differentiation, while indicating a role for its doses in promoting specific differentiation programs.

9.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884638

RESUMO

Diagnosis and cure for rare diseases represent a great challenge for the scientific community who often comes up against the complexity and heterogeneity of clinical picture associated to a high cost and time-consuming drug development processes. Here we show a drug repurposing strategy applied to nephropathic cystinosis, a rare inherited disorder belonging to the lysosomal storage diseases. This approach consists in combining mechanism-based and cell-based screenings, coupled with an affordable computational analysis, which could result very useful to predict therapeutic responses at both molecular and system levels. Then, we identified potential drugs and metabolic pathways relevant for the pathophysiology of nephropathic cystinosis by comparing gene-expression signature of drugs that share common mechanisms of action or that involve similar pathways with the disease gene-expression signature achieved with RNA-seq.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinose/tratamento farmacológico , Cistinose/genética , Reposicionamento de Medicamentos , Nefropatias/tratamento farmacológico , Nefropatias/genética , Doenças Raras/tratamento farmacológico , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/efeitos da radiação , Células Cultivadas , Biologia Computacional/métodos , Cistinose/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Nefropatias/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Redes e Vias Metabólicas , Doenças Raras/genética , Doenças Raras/metabolismo , Transcriptoma
10.
Nat Commun ; 12(1): 2452, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907191

RESUMO

The cell cycle is the process by which eukaryotic cells replicate. Yeast cells cycle asynchronously with each cell in the population budding at a different time. Although there are several experimental approaches to synchronise cells, these usually work only in the short-term. Here, we build a cyber-genetic system to achieve long-term synchronisation of the cell population, by interfacing genetically modified yeast cells with a computer by means of microfluidics to dynamically change medium, and a microscope to estimate cell cycle phases of individual cells. The computer implements a controller algorithm to decide when, and for how long, to change the growth medium to synchronise the cell-cycle across the population. Our work builds upon solid theoretical foundations provided by Control Engineering. In addition to providing an avenue for yeast cell cycle synchronisation, our work shows that control engineering can be used to automatically steer complex biological processes towards desired behaviours similarly to what is currently done with robots and autonomous vehicles.


Assuntos
Ciclo Celular/genética , Ciclinas/genética , Retroalimentação Fisiológica , GTP Fosfo-Hidrolases/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Algoritmos , Automação Laboratorial , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo Celular/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , Ciclinas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/metabolismo , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Organismos Geneticamente Modificados , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Vermelha Fluorescente
11.
Stem Cell Reports ; 16(5): 1381-1390, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33891873

RESUMO

Controlling cell fate has great potential for regenerative medicine, drug discovery, and basic research. Although transcription factors are able to promote cell reprogramming and transdifferentiation, methods based on their upregulation often show low efficiency. Small molecules that can facilitate conversion between cell types can ameliorate this problem working through safe, rapid, and reversible mechanisms. Here, we present DECCODE, an unbiased computational method for identification of such molecules based on transcriptional data. DECCODE matches a large collection of drug-induced profiles for drug treatments against a large dataset of primary cell transcriptional profiles to identify drugs that either alone or in combination enhance cell reprogramming and cell conversion. Extensive validation in the context of human induced pluripotent stem cells shows that DECCODE is able to prioritize drugs and drug combinations enhancing cell reprogramming. We also provide predictions for cell conversion with single drugs and drug combinations for 145 different cell types.


Assuntos
Reprogramação Celular , Bibliotecas de Moléculas Pequenas/farmacologia , Algoritmos , Animais , Automação , Reprogramação Celular/efeitos dos fármacos , Análise por Conglomerados , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Reprodutibilidade dos Testes
12.
Cancer Res ; 81(8): 1988-2001, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33687947

RESUMO

Hepatic fat accumulation is associated with diabetes and hepatocellular carcinoma (HCC). Here, we characterize the metabolic response that high-fat availability elicits in livers before disease development. After a short term on a high-fat diet (HFD), otherwise healthy mice showed elevated hepatic glucose uptake and increased glucose contribution to serine and pyruvate carboxylase activity compared with control diet (CD) mice. This glucose phenotype occurred independently from transcriptional or proteomic programming, which identifies increased peroxisomal and lipid metabolism pathways. HFD-fed mice exhibited increased lactate production when challenged with glucose. Consistently, administration of an oral glucose bolus to healthy individuals revealed a correlation between waist circumference and lactate secretion in a human cohort. In vitro, palmitate exposure stimulated production of reactive oxygen species and subsequent glucose uptake and lactate secretion in hepatocytes and liver cancer cells. Furthermore, HFD enhanced the formation of HCC compared with CD in mice exposed to a hepatic carcinogen. Regardless of the dietary background, all murine tumors showed similar alterations in glucose metabolism to those identified in fat exposed nontransformed mouse livers, however, particular lipid species were elevated in HFD tumor and nontumor-bearing HFD liver tissue. These findings suggest that fat can induce glucose-mediated metabolic changes in nontransformed liver cells similar to those found in HCC. SIGNIFICANCE: With obesity-induced hepatocellular carcinoma on a rising trend, this study shows in normal, nontransformed livers that fat induces glucose metabolism similar to an oncogenic transformation.


Assuntos
Carcinoma Hepatocelular/etiologia , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/etiologia , Animais , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica , Ciclo do Ácido Cítrico/fisiologia , Ácidos Graxos/metabolismo , Teste de Tolerância a Glucose , Humanos , Ácido Láctico/biossíntese , Metabolismo dos Lipídeos , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Palmitatos/farmacologia , Peroxissomos/metabolismo , Proteômica , Piruvato Carboxilase/metabolismo , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Ativação Transcricional
13.
ACS Omega ; 6(4): 2473-2476, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553865

RESUMO

Extracting quantitative measurements from time-lapse images is necessary in external feedback control applications, where segmentation results are used to inform control algorithms. We describe ChipSeg, a computational tool that segments bacterial and mammalian cells cultured in microfluidic devices and imaged by time-lapse microscopy, which can be used also in the context of external feedback control. The method is based on thresholding and uses the same core functions for both cell types. It allows us to segment individual cells in high cell density microfluidic devices, to quantify fluorescent protein expression over a time-lapse experiment, and to track individual mammalian cells. ChipSeg enables robust segmentation in external feedback control experiments and can be easily customized for other experimental settings and research aims.

14.
Methods Mol Biol ; 2229: 205-219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33405224

RESUMO

Applications of control engineering to mammalian cell biology have been recently implemented for precise regulation of gene expression. In this chapter, we report the main experimental and computational methodologies to implement automatic feedback control of gene expression in mammalian cells using a microfluidics/microscopy platform.


Assuntos
Expressão Gênica , Técnicas Analíticas Microfluídicas/instrumentação , Algoritmos , Animais , Engenharia Genética , Humanos , Dispositivos Lab-On-A-Chip
15.
Bioinformatics ; 36(Suppl_2): i787-i794, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33381827

RESUMO

MOTIVATION: Untargeted metabolomic approaches hold a great promise as a diagnostic tool for inborn errors of metabolisms (IEMs) in the near future. However, the complexity of the involved data makes its application difficult and time consuming. Computational approaches, such as metabolic network simulations and machine learning, could significantly help to exploit metabolomic data to aid the diagnostic process. While the former suffers from limited predictive accuracy, the latter is normally able to generalize only to IEMs for which sufficient data are available. Here, we propose a hybrid approach that exploits the best of both worlds by building a mapping between simulated and real metabolic data through a novel method based on Siamese neural networks (SNN). RESULTS: The proposed SNN model is able to perform disease prioritization for the metabolic profiles of IEM patients even for diseases that it was not trained to identify. To the best of our knowledge, this has not been attempted before. The developed model is able to significantly outperform a baseline model that relies on metabolic simulations only. The prioritization performances demonstrate the feasibility of the method, suggesting that the integration of metabolic models and data could significantly aid the IEM diagnosis process in the near future. AVAILABILITY AND IMPLEMENTATION: Metabolic datasets used in this study are publicly available from the cited sources. The original data produced in this study, including the trained models and the simulated metabolic profiles, are also publicly available (Messa et al., 2020).


Assuntos
Doenças Metabólicas , Redes Neurais de Computação , Humanos , Aprendizado de Máquina , Metaboloma , Metabolômica
16.
Proc Natl Acad Sci U S A ; 117(51): 32453-32463, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288711

RESUMO

Pathogenic mutations in the copper transporter ATP7B have been hypothesized to affect its protein interaction landscape contributing to loss of function and, thereby, to hepatic copper toxicosis in Wilson disease. Although targeting mutant interactomes was proposed as a therapeutic strategy, druggable interactors for rescue of ATP7B mutants remain elusive. Using proteomics, we found that the frequent H1069Q substitution promotes ATP7B interaction with HSP70, thus accelerating endoplasmic reticulum (ER) degradation of the mutant protein and consequent copper accumulation in hepatic cells. This prompted us to use an HSP70 inhibitor as bait in a bioinformatics search for structurally similar Food and Drug Administration-approved drugs. Among the hits, domperidone emerged as an effective corrector that recovered trafficking and function of ATP7B-H1069Q by impairing its exposure to the HSP70 proteostatic network. Our findings suggest that HSP70-mediated degradation can be safely targeted with domperidone to rescue ER-retained ATP7B mutants and, hence, to counter the onset of Wilson disease.


Assuntos
ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Domperidona/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Degeneração Hepatolenticular/genética , Benzimidazóis/química , Benzimidazóis/farmacologia , Células Cultivadas , Cobre/metabolismo , Domperidona/química , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Células Hep G2 , Hepatócitos/metabolismo , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/patologia , Humanos , Mutação de Sentido Incorreto , Ácidos Nipecóticos/química , Ácidos Nipecóticos/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Proteômica/métodos
17.
Sci Adv ; 6(39)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32978159

RESUMO

Cells respond to starvation by shutting down protein synthesis and by activating catabolic processes, including autophagy, to recycle nutrients. This two-pronged response is mediated by the integrated stress response (ISR) through phosphorylation of eIF2α, which represses protein translation, and by inhibition of mTORC1 signaling, which promotes autophagy also through a stress-responsive transcriptional program. Implementation of such a program, however, requires protein synthesis, thus conflicting with general repression of translation. How is this mismatch resolved? We found that the main regulator of the starvation-induced transcriptional program, TFEB, counteracts protein synthesis inhibition by directly activating expression of GADD34, a component of the protein phosphatase 1 complex that dephosphorylates eIF2α. We discovered that GADD34 plays an essential role in autophagy by tuning translation during starvation, thus enabling lysosomal biogenesis and a sustained autophagic flux. Hence, the TFEB-GADD34 axis integrates the mTORC1 and ISR pathways in response to starvation.


Assuntos
Autofagia , Inanição , Autofagia/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação/fisiologia , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
19.
Nat Commun ; 11(1): 970, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080200

RESUMO

Deregulation of mitochondrial network in terminally differentiated cells contributes to a broad spectrum of disorders. Methylmalonic acidemia (MMA) is one of the most common inherited metabolic disorders, due to deficiency of the mitochondrial methylmalonyl-coenzyme A mutase (MMUT). How MMUT deficiency triggers cell damage remains unknown, preventing the development of disease-modifying therapies. Here we combine genetic and pharmacological approaches to demonstrate that MMUT deficiency induces metabolic and mitochondrial alterations that are exacerbated by anomalies in PINK1/Parkin-mediated mitophagy, causing the accumulation of dysfunctional mitochondria that trigger epithelial stress and ultimately cell damage. Using drug-disease network perturbation modelling, we predict targetable pathways, whose modulation repairs mitochondrial dysfunctions in patient-derived cells and alleviate phenotype changes in mmut-deficient zebrafish. These results suggest a link between primary MMUT deficiency, diseased mitochondria, mitophagy dysfunction and epithelial stress, and provide potential therapeutic perspectives for MMA.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Metilmalonil-CoA Mutase/deficiência , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Mitofagia/fisiologia , Alquil e Aril Transferases/deficiência , Alquil e Aril Transferases/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Erros Inatos do Metabolismo/genética , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Camundongos , Camundongos Knockout , Doenças Mitocondriais/genética , Mitofagia/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estresse Fisiológico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Peixe-Zebra
20.
Sci Data ; 6(1): 262, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695049

RESUMO

Williams-Beuren syndrome (WBS) is a relatively rare disease caused by the deletion of 1.5 to 1.8 Mb on chromosome 7 which contains approximately 28 genes. This multisystem disorder is mainly characterized by supravalvular aortic stenosis, mental retardation, and distinctive facial features. We generated mouse embryonic stem (ES) cells clones expressing each of the 4 human WBS genes (WBSCR1, GTF2I, GTF2IRD1 and GTF2IRD2) found in the specific delated region 7q11.23 causative of the WBS. We generated at least three stable clones for each gene with stable integration in the ROSA26 locus of a tetracycline-inducible upstream of the coding sequence of the genet tagged with a 3xFLAG epitope. Three clones for each gene were transcriptionally profiled in inducing versus non-inducing conditions for a total of 24 profiles. This small collection of human WBS-ES cell clones represents a resource to facilitate the study of the function of these genes during differentiation.


Assuntos
Cromossomos Humanos Par 7/genética , Células-Tronco Embrionárias Murinas , Transcriptoma , Síndrome de Williams/genética , Animais , Fatores de Iniciação em Eucariotos/genética , Humanos , Camundongos , Proteínas Musculares/genética , Proteínas Nucleares/genética , Transativadores/genética , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFIII/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA