Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(6): 540, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733434

RESUMO

X-ray fluorescence is a fast, cost-effective, and eco-friendly method for elemental analyses. Portable X-ray fluorescence spectrometers (pXRF) have proven instrumental in detecting metals across diverse matrices, including plants. However, sample preparation and measurement procedures need to be standardized for each instrument. This study examined sample preparation methods and predictive capabilities for nickel (Ni) concentrations in various plants using pXRF, employing empirical calibration based on inductively coupled plasma optical emission spectroscopy (ICP-OES) Ni data. The evaluation involved 300 plant samples of 14 species with variable of Ni accumulation. Various dwell times (30, 60, 90, 120, 300 s) and sample masses (0.5, 1.0, 1.5, 2.0 g) were tested. Calibration models were developed through empirical and correction factor approaches. The results showed that the use of 1.0 g of sample (0.14 g cm-2) and a dwell time of 60 s for the study conditions were appropriate for detection by pXRF. Ni concentrations determined by ICP-OES were highly correlated (R2 = 0.94) with those measured by the pXRF instrument. Therefore, pXRF can provide reliable detection of Ni in plant samples, avoiding the digestion of samples and reducing the decision-making time in environmental management.


Assuntos
Monitoramento Ambiental , Níquel , Plantas , Espectrometria por Raios X , Níquel/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Espectrometria por Raios X/métodos , Plantas/química , Poluentes do Solo/análise
2.
Environ Monit Assess ; 196(5): 481, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683240

RESUMO

The continuous expansion of the global vehicle fleet poses a growing threat to environmental quality through heavy metal contamination. In this scenario, monitoring to safeguard public health in urban areas is necessary. Our study involved the collection of 36 street dust and 29 moss samples from roads of a Brazilian metropolis (Recife) with varying traffic intensities as follows: natural reserve (0 vehicles per day), low (< 15,000 vehicles per day), medium (15,000-30,000 vehicles per day), and high (> 30,000 vehicles per day). ICP-AES analysis was performed to determine the concentrations of nine potentially toxic metals (Ba, Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn) to assess the influence of vehicular flow on urban contamination. In the street dust samples, the mean metal concentrations (mg kg-1) exhibited the following order: Ba (503.7) > Mn (303.0) > Zn (144.4) > Cu (95.3) > Cr (56.1) > Pb (34.2) > V (28.7) > Ni (11.3) > Cd (1.5). Conversely, in the moss samples, the metal concentration order was as follows (mg kg-1): Mn (63.8) > Zn (62.5) > Ba (61.0) > Cu (17.7) > Cr (8.0) > V (7.3) > Pb (7.0) > Ni (2.9) > Cd (0.3). Roads with higher traffic volumes exhibited the highest metal enrichments in moss samples for all metals and in dust samples for Cd, Cr, Mn, Ni, and V. However, dust from low-flow roads had higher enrichments for Ba, Cu, and Zn, indicating the influential role of other traffic-related factors in metal deposition. Our findings highlight traffic flow as the predominant source of pollution in urban centers, with both street dust and moss serving as sensitive indicators of metal input attributable to vehicular traffic. These indicators offer valuable insights for urban quality monitoring and pollution control efforts.


Assuntos
Cidades , Poeira , Monitoramento Ambiental , Metais Pesados , Metais Pesados/análise , Brasil , Monitoramento Ambiental/métodos , Poeira/análise , Poluentes Ambientais/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/análise
3.
Mar Pollut Bull ; 192: 115095, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37295256

RESUMO

Estuaries in Brazil are mostly anthropically affected due to the discharge of industrial and domestic effluents. In two of them, the Santa Cruz Channel Estuary (ITAP) and Sirinhaém River Estuary (SIR), historically affected by mercury pollution and sugarcane industry in Northeast Brazil, we assessed environmental pollution using liver and gill histopathological biomarkers in fish from different trophic levels. Liver samples exhibited serious damages such as hepatic steatosis, necrosis, and infiltration. The gills showed moderate to severe changes, such as lifting of epithelial cells, lamellar aneurysm, and rupture of lamellar epithelium. Most of the changes in the liver and gills were reported for species Centropomus undecimalis and the Gobionellus stomatus, which were considered as good sentinels of pollution. The combination of biomarker methodologies was efficient in diagnosing the serious damage to the species, reinforcing the need for monitoring the health of the ecosystems evaluated.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Estuários , Ecossistema , Brasil , Peixes , Poluição Ambiental , Biomarcadores , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Brânquias/química
4.
Sci Total Environ ; 858(Pt 2): 159750, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309279

RESUMO

Heavy metal pollution by accelerating urbanization is an emerging socio-environmental issue that poses a potential risk to human health and the environment. In this scenario, street dust is a primary source of contaminants. Here, the metal concentrations in street dust of one of the biggest Brazilian cities were assessed aiming to identify and quantify the sources of contamination. The metal bioaccessibility and estimated probabilistic (non)-carcinogenic risks to humans were also evaluated. Thirty-six dust samples were collected in the metropolitan region of Recife. Results showed that the traffic governed the distribution and accumulation of metals in street dust. Emissions from vehicles were the primary source (> 70 %) of heavy metals, except for Cd, which had a mixed origin (natural, traffic, and industrial). Moderate to heavy dust contamination by Ba, Cu, Mn, Pb, and Zn were found, with a very high potential ecological risk. The main exposure route depended on the metal. Barium, Cu, and Pb had ingestion rather than dermal contact as the main route of exposure, while inhalation and dermal contact posed the main risks to Mn and Cr, respectively. The risk for children was higher than for adults. The probabilities of unacceptable carcinogenic risk scenarios (TCRI >10-6) for children and adults were 27 and 4 %, respectively, with Cr being the most concerning metal for the health of the urban population.


Assuntos
Poeira , Metais Pesados , Adulto , Criança , Humanos , Poeira/análise , Brasil , Chumbo , Monitoramento Ambiental/métodos , Metais Pesados/análise , Cidades , Medição de Risco/métodos , Carcinógenos/análise , China
5.
Environ Monit Assess ; 194(5): 331, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35386016

RESUMO

Soil parental material is one of the main factors that influence pedogenesis. Several studies evaluated the relationship between the parent material and soil chemistry, but few studies have assessed such a relationship in semi-arid tropical regions. This investigation was carried out to assess the effect of different parent materials on the chemical composition and available concentrations of macronutrients and micronutrients, including potentially toxic elements (Cd, Cr, Ni, and Pb) in soils in a semi-arid tropical setting. The chemical composition of the soils inherited the geochemical signature of their parent materials. Quartz sandstones, augen gneisses, and peraluminous granites exhibited the lowest reservoirs of plant nutrients and formed sandy, acid, and infertile soils. On the other hand, alkaline soils and soils with high concentrations of nutrients formed on ultramafic rocks (harzburgite), marble, and anorthosite. The pH, clay content, and CEC were the main attributes of the soils governing the availability of macro and micronutrients. The low soil organic carbon contents did not influence the availability of the nutrients. The parent material also influenced the soil texture. Parent materials that are richer in silica formed more sandy soils. The availability of Cd, Cr, and Pb in soils was low; however, the elevated Ni concentrations of soils derived from ultramafic rocks may pose risks to the environment and human health. Cluster and discriminant analyses were used to discriminate the natural fertility of soils. These results are useful for the agro-pedological zoning of the Brazilian semi-arid tropical region and for land use planning.


Assuntos
Metais Pesados , Poluentes do Solo , Brasil , Cádmio/análise , Carbono/análise , Monitoramento Ambiental/métodos , Humanos , Chumbo/análise , Metais Pesados/análise , Micronutrientes/análise , Solo/química , Poluentes do Solo/análise
6.
Mar Pollut Bull ; 177: 113489, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35325795

RESUMO

Heavy metal-contaminated wastes can threaten mangrove forests, one of the most biodiverse ecosystems in the world. The study evaluated the geospatial distribution of heavy metals concentrations in soils, the ecological and human health risks, and metal contents in soil fractions and mangrove organisms in the Botafogo estuary, Brazil, one of the most environmentally impacted estuaries in the country. The metal concentrations exceeded by up to 2.6-fold the geochemical background; 91%, 59%, 64%, 31%, and 82% of the soils were contaminated with Cr, Zn, Pb, Cu, and Ni, respectively. Adverse effects to the biota may occur due to Cr, Cu, Ni and Pb exposures. Contents of clay and organic matter were the main factors governing the distribution of metals in soil, contributing to up to 63% of the total variability. However, the geospatial modeling showed that the predictive ability of these variables varied spatially with the metal and location. The ecological and human health risks assessments indicated that the metal concentrations in soils are safe for the environment and human beings. There was a low transfer of metals from the soil to the biota, with values of sediment-biota accumulation factor (SBAF) and biological accumulation coefficients (BAC) lower than 1.0, except for Zn (SBAF = 13.1). The high Zn bioaccumulation by Crassostrea rhizophorae may be associated with the concentrations of Zn in the bioavailable fractions.


Assuntos
Metais Pesados , Poluentes do Solo , Ecossistema , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Solo/química , Poluentes do Solo/análise
7.
Environ Geochem Health ; 44(1): 43-56, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34519917

RESUMO

Food production in areas contaminated by industrial wastes poses a serious risk to farmers and consumers. Here, we evaluate Cd, Cr, Ni, and Pb concentrations in the soils and the edible parts of lettuce, chives, tomatoes, pepper, and cassava plants grown by small farmers in areas contaminated by slag from an abandoned steel plant in Havana, Cuba. The total, environmentally available, and bioavailable concentrations of metals in the soils and the metals bioconcentration factor in the plants were determined. The risks to human health from food and soil ingestion were estimated. The total and environmentally available concentrations of Cd, Cr, and Pb were above values considered safe by international standards, with likely adverse effect on human health. Cadmium was the most bioavailable metal, reflected in the highest accumulation in the crops' edible parts. Even with negligible DTPA-available Cr concentrations in soils, the Cr concentrations in edible parts of the crops exceeded regulatory levels, suggesting that rhizosphere mechanisms may increase Cr availability. The consumption of vegetables represented 70% of the daily intake dose for Cr, Cd, and Ni, while accidental ingestion of contaminated soil is the predominant human exposure route for Pb. Our results demonstrated the health risks associated with cultivating and consuming vegetables grown on metal contaminated soils in Havana and can assist public policies capable of guaranteeing the sustainability of urban agriculture and food security.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Resíduos Industriais/análise , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Aço , Verduras
8.
Environ Manage ; 69(1): 196-212, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480611

RESUMO

Biochar has attracted interest due to its ability to improve soil fertility, soil carbon, and crop yield. Also, biochar can adsorb metals and render them less bioavailable. We investigated the soil availability, sequential extraction, and maize uptake of Cd, Pb, and Zn in a highly contaminated soil amended with rice straw biochar rates (0.0, 5.0, 10.0, 20.0, and 30.0 Mg ha-1). We hypothesized that biochar application to the soil cultivated with maize attenuates metal toxicity and mobility in slag-polluted soils near an abandoned Pb smelting plant in Brazil. Results showed that applying biochar increased the soil organic carbon, CEC, and P up to 27, 30, and 107, respectively. Plant accumulation of P and N was 104 and 32% higher than control, while aerial and root biomasses were increased by 18 and 23%. The sequential extraction showed that Pb and Zn in the original soil were retained mainly in residual fractions (94 and 87%, respectively), while Cd was mostly allocated in the organic fraction (47%). Biochar rates increased the proportion of Cd in the organic fraction to 85%, while Pb and Zn were redistributed mainly into iron oxides. The Cd, Pb, and Zn bioavailability assessed by DTPA decreased 32% in the biochar-amended soil, reducing plants' metal uptake. The maize biomass increase, metal soil bioavailability decrease, and low metal concentration in shoots driven by biochar indicate that phytoattenuation using rice straw biochar and maize cultivation could reduce risks to humans and the environment in the polluted sites of Santo Amaro.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/análise , Carbono , Carvão Vegetal , Humanos , Chumbo , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Zea mays , Zinco/análise
9.
Environ Geochem Health ; 44(3): 861-872, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34110527

RESUMO

Establishing quality reference values (QRVs) for rare earth elements (REEs) in soils is essential for the screening of these emergent contaminants. Currently, Brazil has the second-largest reserve of REEs, but data regarding background concentrations and distributions in soils remain scarce. The aim of this study was to establish the QRVs and assess the spatial distribution of REEs in soils, including REE fractionations and anomalies in (Piauí) state (251,529.186 km2), northeastern Brazil. This study reports the most detailed data on REE geochemistry in Brazilian soils. A total of 243 composite soil samples was collected at 0-20 cm depth. The mean background concentrations in soils followed the abundance of the earth's upper crust: Ce > La > Nd > Pr > Sm > Dy > Gd > Er > Yb > Eu > Tb > Lu. The ∑REEs (mg kg-1) showed the following order based on the individual mesoregions of Piauí state: Southeast (262.75) > North and Central-North (89.68) > Southwest (40.33). The highest QRVs were observed in the Southeast mesoregion. The establishment of QRVs based on the mesoregion scale improves data representativeness and the monitoring of natural REE values by identifying hot spots. Geostatistical modeling indicated significant local variability, especially in the Southeast mesoregion. The levels of these elements in this spatial zone are naturally higher than the other values across Piauí state and the mesoregion itself and indicate a high potential to exceed the QRVs. Our approach provides much needed data to help strengthen policies for both human health and environmental protection.


Assuntos
Metais Terras Raras , Poluentes do Solo , Monitoramento Ambiental , Política Ambiental , Geologia , Humanos , Metais Terras Raras/análise , Solo , Poluentes do Solo/análise
10.
J Hazard Mater ; 408: 124813, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385722

RESUMO

Mapping of leaves of hyperaccumulators can provide insights into the mechanisms these species utilize to accumulate high metal concentrations. We used synchrotron-based X-ray fluorescence (SXRF) to perform Zn and Ni imaging in leaves of different ages of Noccaea caerulescens. A mature leaf of the related non-hyperaccumulator Thlaspi arvense was also imaged. The concentrations of Zn, Ni, Co, and Cr in N. caerulescens grown on an ultramafic soil were 9-, 10-, 12-, and 3-fold higher than T. arvense. N. caerulescens showed an exceptional ability to accumulate Zn from the soil, posing a bioconcentration factor of 6.7. T. arvense had Zn and Ni distributed uniformly in the leaf blade with doubling fluorescence counts in the tip and margins, suggesting a strategy to excrete metals and avoid toxicity. On the other hand, N. caerulescens displayed distinctly different Zn and Ni accumulation patterns, regardless of the age or metal concentration in the leaves. Zinc was mainly distributed in the cells surrounding the central and secondary veins. Nickel accumulated in the margins and tips of the leaf blade. Given the time required to image large leaves in synchrotron facilities, small leaves can be used to represent the leaf distribution of Zn and Ni in N. caerulescens.


Assuntos
Folhas de Planta , Síncrotrons , Cádmio , Fluorescência , Raios X , Zinco
11.
Chemosphere ; 266: 129019, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33272678

RESUMO

The emission of mercury (Hg) by chlor-alkali plants can pollute soils and sediments, posing risks to the environment and human health. Mangrove ecosystems are particularly sensitive to Hg contamination. Here, we studied the Hg spatial distribution and associated human and ecologic risks in mangrove soils impacted by a chlor-alkali plant. Sixty-six samples of superficial soils were collected from the mangrove of the Botafogo River, Brazil. Mercury contents were determined and ecological and human health risks were estimated from the soil. The Hg contents exceeded the local Hg background by up to 180 times, indicating the substantial anthropic contribution that occurred in the area. Mercury concentrations followed a gradient as a function of the distance from the chlor-alkali plant, with an apparent contribution from the estuary's hydrodynamic regime. The ecological risk was considered high in all the soils evaluated, while the daily average exposure for humans, considering multiple exposure routes to soil, is below the tolerable dose recommended by the World Health Organization (WHO). However, the risk to human health was unacceptable in the estuary section closest to the plant, mainly for children. Vapor inhalation was the main route for estimating non-carcinogenic risk. The results of this study indicate a severe scenario of Hg pollution with unacceptable risks to the ecosystem and the health of human beings, especially of the communities that live from fishery and shellfish colletion and are exposed daily to soils polluted by mercury. Studies on the organomercurial species in the food chain and Hg levels in individuals living close to the estuary are warranted. This research is an important reference in the world regarding the contamination of mangrove areas by Hg.


Assuntos
Mercúrio , Poluentes do Solo , Brasil , Criança , Ecossistema , Monitoramento Ambiental , Humanos , Mercúrio/análise , Medição de Risco , Solo , Poluentes do Solo/análise
12.
Environ Pollut ; 268(Pt B): 115832, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120152

RESUMO

Sodium percarbonate (SPC, 2Na2CO3∙3H2O2), is a compound that can be used under multiple environmental applications. In this work, SPC was employed as oxidant in the treatment of soil contaminated with diesel oil. The soil samples were collected during the earthmoving stage of RNEST Oil Refinery (Petrobras), Brazil. Then, the samples were air-dried, mixed and characterized. Subsequently, raw soil was contaminated with diesel and treated by photo-Fenton reaction (H2O2/Fe2+/UV). SPC played a significant role in the generation of hydroxyl radicals under the catalytic effect of ferrous ions (Fe2+), hydrogen peroxide (H2O2) and radiation. These radicals provoked the photodegradation of polycyclic aromatic hydrocarbons (PAHs), in the soil remediation. A factorial design 33 was carried out to assess the variables which most influenced the decrease in total organic carbon (TOC). The study was performed with the following variables: initial concentration of [H2O2] and [Fe2+], between 190.0 and 950.0 mmol L-1 and 0.0-14.4 mmol L-1, respectively. UV radiation was supplied from sunlight, blacklight lamps, and system without radiation. All experiments were performed with 5.0 g of contaminated soil in 50.0 mL of solution. The initial concentration of Fe2+ showed the statistically most significant effect. The oxidation efficiency evaluated in the best condition showed a decrease from 34,765 mg kg-1 to 15,801 mg kg-1 in TOC and from 85.750 mg kg-1 to 20.770 mg kg-1 in PAHs content. Moreover, the sums of low and high molecular weight polycyclic aromatic hydrocarbons (LMW-PAHs and HMW-PAHs) were 19.537 mg kg-1 and 1.233 mg kg-1, respectively. Both values are within the limits recommended by the United Sates Environmental Protection Agency (USEPA) and evidenced the satisfactory removal of PAHs from contaminated soil, being an alternative to classic oxidation protocols.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Brasil , Carbonatos , Peróxido de Hidrogênio , Oxidantes , Fotólise , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
13.
Environ Monit Assess ; 192(11): 723, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33094392

RESUMO

The background concentration of potentially toxic elements (PTE) in soils is influenced by the parent material composition and soil forming processes. The soil natural concentration of PTE is a first step to establish regulatory levels for the monitoring of these elements in soils suspected of contamination. In the present study, we performed a natural background concentration survey of PTE in soils of the Piauí state, Brazil. The study provides the basis for establishing soil quality reference values (QRVs) for a large area (over 251,000 km2) with different pedological features. A total of 262 geo-referenced soil samples (0.0-0.2 m) were collected in areas relatively undisturbed by human activity. The concentrations of Ba, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb, Sb, V, and Zn were determined by ICP-OES. Univariate statistical methods and multivariate exploratory techniques were used to understand the relationship between soil characteristics, geological features, and PTE concentrations in soils. The mean background concentrations of PTE in the soils were generally lower than those reported in other countries and/or other Brazilian states, and followed the order: Fe > Ba > V > Cr > Cu > Pb > Zn > Ni > Pb > Co > Mo > Sb > Cd. The main factors governing the concentrations of PTE in soils were the parent material and the soil texture. The different geological features in the study area influenced the spatial distribution of PTE and divided the state into three regions presenting low, high, and intermediate values. Given this geological and pedological complexity, we proposed establishing three sets of QRV rather than a single QRV for the whole state to avoid misinterpretation regarding the investigation of areas suspected of contamination. This background concentration survey contains a wealth of information that provides the basis for the soil guideline values in the state and supports future research on the impact of anthropogenic activities in soil contamination.


Assuntos
Metais Pesados , Poluentes do Solo , Brasil , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Valores de Referência , Solo , Poluentes do Solo/análise
14.
Environ Monit Assess ; 192(11): 675, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33025222

RESUMO

The largest uranium-phosphate deposit in Brazil also contains considerable levels of rare earth elements (REEs), which allows for the co-mining of these three ores. The most common methods for REE determination are time-consuming and demand complex sample preparation and use of hazardous reagents. Thus, the development of a safer and faster method to predict REEs in soil could aid in the assessment of these elements. We investigated the efficiency of near-infrared (NIR) spectroscopy to predict REEs in the soil of the uranium-phosphate deposit of Itataia, Brazil. We collected 50 composite topsoil samples in a well-distributed sampling grid along the deposit. The NIR measures in the soils ranged from 750 to 2500 nm. Three partial least squares regressions (PLSR) were selected to calibrate the spectra: full-spectrum partial least squares (PLS), interval partial least squares (iPLS), and successive projections algorithms for interval selection in partial least squares (iSPA-PLS). The concentrations of REEs were measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition to raw spectral data, we also used spectral pretreatments to investigate the effects on prediction results: multiplicative scatter correction (MSC), Savitzky-Golay derivatives (SG), and standard normal variate transformation (SNV). Positive results were obtained in PLS for La and ΣLREE using MSC pretreatment and in iSPA-PLS for Nd and Ce using raw data. The accuracy of the measurements was related to the REE concentration in soil; i.e., elements with higher concentrations tended to present more accurate results. The results obtained here aim to contribute to the development of NIR spectroscopy techniques as a tool for mapping the concentrations of REEs in topsoil.


Assuntos
Urânio , Brasil , Monitoramento Ambiental , Análise dos Mínimos Quadrados , Fosfatos , Solo , Espectroscopia de Luz Próxima ao Infravermelho
15.
Environ Monit Assess ; 192(7): 453, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32577924

RESUMO

High pedological and geological variability can trigger the formation of REE hotspots, causing a need to optimize the establishment of quality reference values (QRVs). Thus, we determined the background concentrations of REEs in the soils of an emerging Brazilian state and used a combination of Moran's I and indicator kriging to identify REE hotspots and determine QRVs. A total of 100 composite soil samples was collected at a 0.20 m depth to establish background concentrations, QRVs, and spatial distribution and to elaborate probability maps for REEs. The QRVs established for soils were the following (mg kg-1): La (27.21), Ce (57.26), Pr (10.49), Nd (24.29), Sm (4.75), Eu (0.90), Gd (4.22), Tb (0.82), Dy (1.54), Ho (0.38), Er (1.23), Yb (1.07), Lu (0.24), Y (10.65), and Sc (3.70). It was possible to draw attention to the Northwest and Southwest regions of the Rio Grande do Norte (RN) state, due to the formation of REE hotspots, indicated by Moran's I, and a high tendency to exceed the QRVs, confirmed by the indicator kriging. The high background concentrations and geochemical patterns for REEs showed that a single QRV for each REE and the entire state can neglect specific environmental characteristics and misrepresent the natural geochemistry of the soil. Thus, specific QRVs were established to optimize the monitoring of natural REE values by identifying hotspot areas. The criteria established here may be useful for other groups of potentially toxic elements, provided that observations meet the requirements of the spatial autocorrelation and kriging analyses. Graphical abstract.


Assuntos
Metais Terras Raras/análise , Poluentes do Solo/análise , Monitoramento Ambiental , Valores de Referência , Solo
16.
Environ Pollut ; 260: 114025, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32004964

RESUMO

Odontarrhena muralis is one of the most promissing plant species for Ni phytomining, and soil amendments can further increase its Ni phytoextraction ability. Here we investigated whether Ni phytomining/phytoremediation using this Ni hyperaccumulator can benefit from applying citric acid to a serpentine soil that is naturally enriched in Ni (>1000 mg kg-1). Synchrotron micro X-ray fluorescence (µ-SXRF) was used to image Ni and other metal distributions in whole fresh leaves of O. muralis. Leaf Ni accumulation in plants grown on citric acid-amended soil increased up to 55% while Co, Cr, Fe, Mn, and Zn concentrations were 4-, 14-, 6-, 7- and 1.3-fold higher than the control treatment. O. muralis presented high bioconcentration factors (leaf to soil concentration ratio) to Ni and Zn whereas Cr was seemingly excluded from uptake. The µ-SXRF images showed a uniform distribution of Ni, preferential localization of Co in the leaf tip, and clear concentration of Mn in the base of trichomes. The citric acid treatments strongly increased the Co fluoerescence intensity in the leaf tip and altered the spatial distribution of Mn across the leaf, but there was no difference in Ni fluorescence counts between the trichome-base region and the bulk leaf. Our data from a serpentine soil suggests that citrate treatment enhances Ni uptake, but Co is excreted from leaves even in low leaf concentrations, which can make Co phytoming using O. muralis unfeasible in natural serpentine soils.


Assuntos
Biodegradação Ambiental , Brassicaceae , Metais/metabolismo , Poluentes do Solo , Ácido Cítrico , Metais Pesados , Níquel , Solo
17.
Environ Sci Pollut Res Int ; 26(32): 33532-33540, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31578680

RESUMO

Thorium (Th) is one of the main sources of natural radiation to ecosystems. However, data regarding Th concentrations in rocks, soil, water and sediments are currently scarce. Accordingly, this study aimed to establish background concentrations and quality reference values (QRVs) for Th in the environmentally impacted Ipojuca River catchment in Brazil, where the weathering of granites releases Th into the environment. Additionally, the study aimed to calculate Th fluxes in water, and both bed and suspended sediment. The mean Th concentration in the study catchment soils was 28.6 mg kg-1. The QRV for Th was estimated to be 21 mg kg-1 and 86.3 Bq kg-1. Bed and suspended sediment-associated concentrations ranged from 2.8 to 32.9 mg kg-1. Suspended sediment-associated discharge (3.42 t year-1) accounted for more than 99% of the total Th flux, while the dissolved phase transport was negligible in comparison. At the downstream cross section in the study catchment, suspended sediment samples exhibited Th concentrations similar to those observed in rivers impacted by mining activities. The discharge of sediment to the ocean from the study area is mainly triggered by soil erosion processes in the hotspot region (middle-inferior course). It is essential to identify Th hotspots before establishing environmental policies regarding human health and environmental protection.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Tório/análise , Brasil , Ecossistema , Sedimentos Geológicos/química , Rios , Solo/química , Água
18.
Ecotoxicol Environ Saf ; 183: 109469, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31376803

RESUMO

Botafogo river estuary poses the highest Hg concentration reported for mangrove soils in Brazil. Such high contamination took place owing to the improper waste disposal for 24 years from a chlor-alkali plant nearby the estuary. Here we determined Hg concentrations in soils, mangrove plants (Rhizophora mangle and Laguncularia racemosa), and an aquatic organism (the oyster species Crassostrea rhizophorae) to assess Hg bioavailability. Besides, a sequential extraction procedure was used to separate soil Hg into five fractions: water-soluble; 'human stomach acid' soluble; organically bound; elemental Hg; mercuric sulfide. Results showed that environmentally available concentration of Hg in the mangrove soils were up to 150-fold higher than a pristine mangrove under the same geological context used as a reference. Additionally, Hg concentration in soils was also above sediment quality guidelines and Hg adverse effects towards sensitive estuarine organisms are likely. Mercury concentrations in oysters were the highest reported in Brazil, but within safety standards according to the country food security agency. It seems that Hg stocks in the studied soils are governed by organic matter and redox conditions, but changing on environmental conditions and land use can alter this balance and convert these mangrove areas from sink to source of Hg to the environment.


Assuntos
Organismos Aquáticos/química , Monitoramento Ambiental/métodos , Mercúrio/análise , Poluentes do Solo/análise , Áreas Alagadas , Animais , Organismos Aquáticos/efeitos dos fármacos , Disponibilidade Biológica , Brasil , Indústria Química , Estuários , Humanos , Ostreidae/química , Ostreidae/efeitos dos fármacos , Rhizophoraceae/química , Rhizophoraceae/efeitos dos fármacos , Rios/química , Solo/química
19.
Environ Monit Assess ; 191(8): 514, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31346771

RESUMO

Despite the rare earth elements (REEs) being considered as emerging contaminants, their natural values and possible anthropogenic enrichments in soils have not been studied well in Brazil. The intensive use of conditioners and fertilizers in agricultural frontiers from Brazilian Cerrado can increase the concentration of REE in soils of the region. In this context, the objectives of this study were to determine the natural content and establish quality reference values (QRV) for REEs in soils of a watershed from Brazilian Cerrado composed of sedimentary rocks and to evaluate the influence of agricultural cultivation and the spatial variability of these elements. Thirty and twenty-six composite soil samples were collected under native vegetation and soybean cultivation, respectively. The background concentrations followed the order (mg kg-1) Ce > Nd > La > Pr > Sm > Yb > Er > Eu > Dy. The QRVs established were as follows (mg kg-1): La (1.76), Ce (5.20), Pr (0.74), Nd (1.35), Sm (0.38), Eu (0.06), Dy (0.15), Er (0.12), and Yb (0.14). Lantanium, Ce, and Er exhibited strong spatial dependence, while Eu, Dy, and Yb showed weak or total absence of spatial dependence. The spherical model was most suitable for the spatial characteristics of REEs. The parent material, mainly characterized by soils derived from sedimentary rocks (i.e., sandstone), was the primordial source of REEs for soils and that there was no or little effect of agricultural practices on these levels. Our data reinforced the need for geochemical mapping at the watershed scale, since they are important conservation units.


Assuntos
Monitoramento Ambiental , Metais Terras Raras/análise , Poluentes do Solo/análise , Agricultura , Brasil , Solo/química
20.
Environ Sci Pollut Res Int ; 25(34): 34426-34437, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30306445

RESUMO

Rare earth elements (REEs) have been recently recognized as emergent pollutants in rivers. However, data regarding REE fluxes in association with either bed or suspended are scarce. To address this knowledge gap, we determined the concentrations and fluxes of La, Ce, Pr, Nd, Sm, Eu, Gd, Yb, Lu, Dy, Er, Ho, Tb, and Tm in bed and suspended sediment samples of a representative polluted Brazilian River. Sediment-associated data on REEs were placed in the context of corresponding background concentrations in soils under natural conditions along the Ipojuca watershed. Light rare earth elements (LREEs) comprised more than 94% of the total REEs associated with bed and suspended sediments. Suspended sediments accounted for more than 95% of the total REE flux. The Ce and Nd fluxes of about 7 t year-1 underscore the importance of including REEs in future estimations of global suspended sediment-associated element fluxes. In contrast, bedload often transported less than 0.0007 t year-1 of each REE. The main sources of pollution in the Ipojuca River are anthropogenic, likely due to domestic effluent and waste water from industrial and agricultural operations-major causes of sediment-associated Gd transport in polluted streams.


Assuntos
Sedimentos Geológicos/análise , Metais Terras Raras/análise , Poluentes Químicos da Água/análise , Agricultura , Brasil , Monitoramento Ambiental/métodos , Rios/química , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA