Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30524481

RESUMO

Ouratea fieldingiana (Gardner) Engl is popularly used for wound healing. This study describes the main chemical compounds present in extracts of O. fieldingiana and evaluates their biological potential by investigating antifungal, antioxidant, and anticholinesterase activities. The action mechanism of main antifungal compound was investigated by molecular docking using the enzyme sterol 14-α demethylase, CYP51, required for ergosterol biosynthesis. The seeds and leaves were extracted with ethanol in a Soxhlet apparatus and by maceration, respectively. Both extracts were subjected to silica gel column chromatography for isolation of main constituents, followed by purification in sephadex. The structures of compounds were established by 1H and 13C-NMR spectroscopy and identified by comparison with literature data as amentoflavone and kaempferol 3-O-rutinoside, respectively. The antioxidant activities of the extracts were determined by the DPPH and ABTS free radical inhibition methods. In general, the extracts with the highest antioxidant activity corresponded to those with higher content of phenolic compounds and flavonoids. The ethanol extracts and two isolated compounds presented relevant antifungal activity against several Candida strains. The in silico findings revealed that the compound amentoflavone coupled with the CYP450 protein due to the low energy stabilization (-9.39 kcal/mol), indicating a possible mechanism of action by inhibition of the ergosterol biosynthesis of Candida fungi.

2.
Biomed Pharmacother ; 107: 1030-1036, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30257314

RESUMO

The aim of this study was to evaluate the antinociceptive effect of Kaempferol-3-O-rutinoside (KR), isolated from the plant Ouratea fieldingiana, on the orofacial nociception and possible mechanisms of action. Adult zebrafish (Danio rerio) were tested as a behavioral model to study formalin, glutamate, capsaicin, cinnamaldehyde and acidic saline-induced orofacial nociception, using as parameter the number of times the fish crossed the lines between the quadrants of a glass Petri dish during a specific time. Morphine was used as positive control. The effect of KR was tested for modulation by opioid (naloxone), nitrergic (L-NAME), TRPV1 (ruthenium red), TRPA1 (camphor) or ASIC (amiloride) antagonists. The effect of KR on zebrafish locomotor behavior was evaluated with the open field test. KR did not alter the fish's locomotor system and significantly reduced the orofacial nociceptive behavior induced by all noxious agents compared to the control group. The antinociceptive effect of KR was similar to morphine. All antagonists inhibited the antinociceptive effect of KR. KR has pharmacological potential for the treatment of acute orofacial pain and this effect is modulated by the opioid and nitrergic systems as well as TRPV1, TRPA1 and ASIC channels. These results can lead to the development of a new natural product for the treatment of orofacial pain and confirm the popular use of O. fieldingiana leaf for pain relief.


Assuntos
Analgésicos/farmacologia , Dor Facial/tratamento farmacológico , Quempferóis/farmacologia , Ochnaceae/química , Analgésicos/isolamento & purificação , Analgésicos Opioides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Quempferóis/isolamento & purificação , Masculino , Morfina/farmacologia , Naloxona/farmacologia , Nociceptividade/efeitos dos fármacos , Folhas de Planta , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA