Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(36): 22580-22589, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848066

RESUMO

The global movement of pathogens is altering populations and communities through a variety of direct and indirect ecological pathways. The direct effect of a pathogen on a host is reduced survival, which can lead to decreased population densities. However, theory also suggests that increased mortality can lead to no change or even increases in the density of the host. This paradoxical result can occur in a regulated population when the pathogen's negative effect on survival is countered by increased reproduction at the lower density. Here, we analyze data from a long-term capture-mark-recapture experiment of Trinidadian guppies (Poecilia reticulata) that were recently infected with a nematode parasite (Camallanus cotti). By comparing the newly infected population with a control population that was not infected, we show that decreases in the density of the infected guppy population were transient. The guppy population compensated for the decreased survival by a density-dependent increase in recruitment of new individuals into the population, without any change in the underlying recruitment function. Increased recruitment was related to an increase in the somatic growth of uninfected fish. Twenty months into the new invasion, the population had fully recovered to preinvasion densities even though the prevalence of infection of fish in the population remained high (72%). These results show that density-mediated indirect effects of novel parasites can be positive, not negative, which makes it difficult to extrapolate to how pathogens will affect species interactions in communities. We discuss possible hypotheses for the rapid recovery.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Modelos Biológicos , Infecções por Nematoides/epidemiologia , Poecilia/parasitologia , Dinâmica Populacional/estatística & dados numéricos , Animais , Feminino , Masculino
2.
Proc Biol Sci ; 281(1778): 20132374, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24430844

RESUMO

Increased potential for disease transmission among nest-mates means living in groups has inherent costs. This increased potential is predicted to select for disease resistance mechanisms that are enhanced by cooperative exchanges among group members, a phenomenon known as social immunity. One potential mediator of social immunity is diet nutritional balance because traits underlying immunity can require different nutritional mixtures. Here, we show how dietary protein-carbohydrate balance affects social immunity in ants. When challenged with a parasitic fungus Metarhizium anisopliae, workers reared on a high-carbohydrate diet survived approximately 2.8× longer in worker groups than in solitary conditions, whereas workers reared on an isocaloric, high-protein diet survived only approximately 1.3× longer in worker groups versus solitary conditions. Nutrition had little effect on social grooming, a potential mechanism for social immunity. However, experimentally blocking metapleural glands, which secrete antibiotics, completely eliminated effects of social grouping and nutrition on immunity, suggesting a causal role for secretion exchange. A carbohydrate-rich diet also reduced worker mortality rates when whole colonies were challenged with Metarhizium. These results provide a novel mechanism by which carbohydrate exploitation could contribute to the ecological dominance of ants and other social groups.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/imunologia , Formigas/imunologia , Metabolismo dos Carboidratos/imunologia , Animais , Formigas/fisiologia , Resistência à Doença/imunologia , Comportamento Alimentar , Asseio Animal , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA