Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 541, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714838

RESUMO

Age-related diseases pose great challenges to health care systems worldwide. During aging, endothelial senescence increases the risk for cardiovascular disease. Recently, it was described that Phosphatase 1 Nuclear Targeting Subunit (PNUTS) has a central role in cardiomyocyte aging and homeostasis. Here, we determine the role of PNUTS in endothelial cell aging. We confirm that PNUTS is repressed in senescent endothelial cells (ECs). Moreover, PNUTS silencing elicits several of the hallmarks of endothelial aging: senescence, reduced angiogenesis and loss of barrier function. Findings are validate in vivo using endothelial-specific inducible PNUTS-deficient mice (Cdh5-CreERT2;PNUTSfl/fl), termed PNUTSEC-KO. Two weeks after PNUTS deletion, PNUTSEC-KO mice present severe multiorgan failure and vascular leakage. Transcriptomic analysis of PNUTS-silenced HUVECs and lungs of PNUTSEC-KO mice reveal that the PNUTS-PP1 axis tightly regulates the expression of semaphorin 3B (SEMA3B). Indeed, silencing of SEMA3B completely restores barrier function after PNUTS loss-of-function. These results reveal a pivotal role for PNUTS in endothelial homeostasis through a SEMA3B downstream pathway that provides a potential target against the effects of aging in ECs.


Assuntos
Senescência Celular , Células Endoteliais da Veia Umbilical Humana , Semaforinas , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Semaforinas/metabolismo , Semaforinas/genética
2.
J Physiol ; 601(17): 3961-3974, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470310

RESUMO

High gestational weight gain (GWG) is a cardiovascular risk factor and may disturb neonatal endothelial function. Long non-coding RNAs (lncRNAs) regulate gene expression epigenetically and can modulate endothelial function. Endothelial colony forming cells (ECFCs), circulating endothelial precursors, are a recruitable source of endothelial cells and sustain endothelial function, vascular growth and repair. We here investigated whether higher GWG affects neonatal ECFC function and elucidated the role of lncRNAs herein. Wound healing of umbilical cord blood-derived ECFCs after pregnancies with GWG <13 kg versus >13 kg was determined in a scratch assay and based on monolayer impedance after electric wounding (electric cell-substrate impedance sensing, ECIS). LncRNA expression was analysed by RNA sequencing. The function of killer cell lectin-like receptor K1 antisense RNA (KLRK1-AS1) was investigated after siRNA-based knockdown. Closure of the scratch was delayed by 25% (P = 0.041) in the higher GWG group and correlated inversely with GWG (R = -0.538, P = 0.012) in all subjects (n = 22). Similarly, recovery of the monolayer barrier after electric wounding was delayed (-11% after 20 h; P = 0.014; n = 15). Several lncRNAs correlated with maternal GWG, the most significant one being KLRK1-AS1 (log2 fold change = -0.135, P < 0.001, n = 35). KLRK1-AS1 knockdown (n = 4) reduced barrier recovery after electric wounding by 21% (P = 0.029) and KLRK1-AS1 expression correlated with the time required for wound healing for both scratch (R = 0.447, P = 0.033) and impedance-based assay (R = 0.629, P = 0.014). Higher GWG reduces wound healing of neonatal ECFCs, and lower levels of the lncRNA KLRK1-AS1 may underlie this. KEY POINTS: Maternal cardiovascular risk factors such as diabetes, obesity and smoking in pregnancy disturb fetal endothelial function, and we here investigated whether also high gestational weight gain (GWG) has an impact on fetal endothelial cells. Circulating endothelial progenitor cells (endothelial colony forming cells, ECFCs) are highly abundant in the neonatal blood stream and serve as a circulating pool for vascular growth and repair. We revealed that higher GWG delays wound healing capacity of ECFCs in vitro. We identified the regulatory RNA lncRNA KLRK1-AS1 as a link between GWG and delayed ECFC wound healing. Our data show that high GWG, independent of pre-pregnancy BMI, affects neonatal ECFC function.


Assuntos
Células Progenitoras Endoteliais , Ganho de Peso na Gestação , RNA Longo não Codificante , Gravidez , Recém-Nascido , Feminino , Humanos , RNA Longo não Codificante/genética , Células Cultivadas , Cicatrização , Subfamília K de Receptores Semelhantes a Lectina de Células NK
4.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360851

RESUMO

Endothelial cells can acquire a mesenchymal phenotype through a process called Endothelial-to-Mesenchymal transition (EndMT). This event is found in embryonic development, but also in pathological conditions. Blood vessels lose their ability to maintain vascular homeostasis and ultimately develop atherosclerosis, pulmonary hypertension, or fibrosis. An increase in inflammatory signals causes an upregulation of EndMT transcription factors, mesenchymal markers, and a decrease in endothelial markers. In our study, we show that the induction of EndMT results in an increase in long non-coding RNA AERRIE expression. JMJD2B, a known EndMT regulator, induces AERRIE and subsequently SULF1. Silencing of AERRIE shows a partial regulation of SULF1 but showed no effect on the endothelial and mesenchymal markers. Additionally, the overexpression of AERRIE results in no significant changes in EndMT markers, suggesting that AERRIE is marginally regulating mesenchymal markers and transcription factors. This study identifies AERRIE as a novel factor in EndMT, but its mechanism of action still needs to be elucidated.


Assuntos
Transição Epitelial-Mesenquimal , RNA Longo não Codificante/fisiologia , Sulfotransferases/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo
5.
Commun Biol ; 3(1): 265, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457386

RESUMO

Blood vessels are constantly exposed to shear stress, a biomechanical force generated by blood flow. Normal shear stress sensing and barrier function are crucial for vascular homeostasis and are controlled by adherens junctions (AJs). Here we show that AJs are stabilized by the shear stress-induced long non-coding RNA LASSIE (linc00520). Silencing of LASSIE in endothelial cells impairs cell survival, cell-cell contacts and cell alignment in the direction of flow. LASSIE associates with junction proteins (e.g. PECAM-1) and the intermediate filament protein nestin, as identified by RNA affinity purification. The AJs component VE-cadherin showed decreased stabilization, due to reduced interaction with nestin and the microtubule cytoskeleton in the absence of LASSIE. This study identifies LASSIE as link between nestin and VE-cadherin, and describes nestin as crucial component in the endothelial response to shear stress. Furthermore, this study indicates that LASSIE regulates barrier function by connecting AJs to the cytoskeleton.


Assuntos
Células Endoteliais/metabolismo , RNA Longo não Codificante/metabolismo , Fenômenos Biomecânicos , Células Endoteliais da Veia Umbilical Humana , Humanos , Estresse Mecânico
6.
Nat Commun ; 11(1): 2039, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341350

RESUMO

Long non-coding RNAs (lncRNAs) contribute to cardiac (patho)physiology. Aging is the major risk factor for cardiovascular disease with cardiomyocyte apoptosis as one underlying cause. Here, we report the identification of the aging-regulated lncRNA Sarrah (ENSMUST00000140003) that is anti-apoptotic in cardiomyocytes. Importantly, loss of SARRAH (OXCT1-AS1) in human engineered heart tissue results in impaired contractile force development. SARRAH directly binds to the promoters of genes downregulated after SARRAH silencing via RNA-DNA triple helix formation and cardiomyocytes lacking the triple helix forming domain of Sarrah show an increase in apoptosis. One of the direct SARRAH targets is NRF2, and restoration of NRF2 levels after SARRAH silencing partially rescues the reduction in cell viability. Overexpression of Sarrah in mice shows better recovery of cardiac contractile function after AMI compared to control mice. In summary, we identified the anti-apoptotic evolutionary conserved lncRNA Sarrah, which is downregulated by aging, as a regulator of cardiomyocyte survival.


Assuntos
Apoptose , Infarto do Miocárdio/genética , Miócitos Cardíacos/citologia , RNA Longo não Codificante/genética , Envelhecimento , Animais , Proteínas de Transporte/genética , Sobrevivência Celular , Coenzima A-Transferases/genética , Modelos Animais de Doenças , Inativação Gênica , Humanos , Proteínas com Domínio LIM/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , RNA Antissenso/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição de p300-CBP/genética
7.
Front Cell Dev Biol ; 8: 619079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505972

RESUMO

Aging is accompanied by many physiological changes. These changes can progressively lead to many types of cardiovascular diseases. During this process blood vessels lose their ability to maintain vascular homeostasis, ultimately resulting in hypertension, stroke, or myocardial infarction. Increase in DNA damage is one of the hallmarks of aging and can be repaired by the DNA signaling and repair system. In our study we show that long non-coding RNA Aerrie (linc01013) contributes to the DNA signaling and repair mechanism. Silencing of Aerrie in endothelial cells impairs angiogenesis, migration, and barrier function. Aerrie associates with YBX1 and together they act as important factors in DNA damage signaling and repair. This study identifies Aerrie as a novel factor in genomic stability and as a binding partner of YBX1 in responding to DNA damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA