Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evolution ; 77(8): 1910-1911, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37300431

RESUMO

Can changes in plasticity evolve in populations in response to local conditions? Zhen et al. addressed this question using populations of Bicyclus butterflies from Cameroon. The results of the study suggest that local adaptation in these African butterflies involved changes in the degree of plasticity, such that stronger responses to temperature were found in populations from habitats with stronger seasonal fluctuations. Interestingly, differentiation in reaction norms occurred despite high levels of gene flow among populations, indicating a small number of loci contributing to evolved differences in plasticity.


Assuntos
Borboletas , Animais , Borboletas/genética , Evolução Biológica , Ecossistema , Adaptação Fisiológica , Aclimatação
2.
Gigascience ; 11(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022701

RESUMO

BACKGROUND: The Glanville fritillary (Melitaea cinxia) butterfly is a model system for metapopulation dynamics research in fragmented landscapes. Here, we provide a chromosome-level assembly of the butterfly's genome produced from Pacific Biosciences sequencing of a pool of males, combined with a linkage map from population crosses. RESULTS: The final assembly size of 484 Mb is an increase of 94 Mb on the previously published genome. Estimation of the completeness of the genome with BUSCO indicates that the genome contains 92-94% of the BUSCO genes in complete and single copies. We predicted 14,810 genes using the MAKER pipeline and manually curated 1,232 of these gene models. CONCLUSIONS: The genome and its annotated gene models are a valuable resource for future comparative genomics, molecular biology, transcriptome, and genetics studies on this species.


Assuntos
Borboletas , Fritillaria , Animais , Borboletas/genética , Mapeamento Cromossômico , Cromossomos/genética , Fritillaria/genética , Genoma , Masculino
3.
Syst Biol ; 71(3): 570-588, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34363477

RESUMO

Compared to other regions, the drivers of diversification in Africa are poorly understood. We studied a radiation of insects with over 100 species occurring in a wide range of habitats across the Afrotropics to investigate the fundamental evolutionary processes and geological events that generate and maintain patterns of species richness on the continent. By investigating the evolutionary history of Bicyclus butterflies within a phylogenetic framework, we inferred the group's origin at the Oligo-Miocene boundary from ancestors in the Congolian rainforests of central Africa. Abrupt climatic fluctuations during the Miocene (ca. 19-17 Ma) likely fragmented ancestral populations, resulting in at least eight early-divergent lineages. Only one of these lineages appears to have diversified during the drastic climate and biome changes of the early Miocene, radiating into the largest group of extant species. The other seven lineages diversified in forest ecosystems during the late Miocene and Pleistocene when climatic conditions were more favorable-warmer and wetter. Our results suggest changing Neogene climate, uplift of eastern African orogens, and biotic interactions have had different effects on the various subclades of Bicyclus, producing one of the most spectacular butterfly radiations in Africa. [Afrotropics; biodiversity; biome; biotic interactions; Court Jester; extinction; grasslands; paleoclimates; Red Queen; refugia forests; dependent-diversification; speciation.].


Assuntos
Borboletas , Animais , Biodiversidade , Borboletas/genética , Ecossistema , Especiação Genética , Filogenia , Filogeografia
4.
Evolution ; 75(7): 1805-1819, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34097756

RESUMO

Developmental plasticity can match organismal phenotypes to ecological conditions, helping populations to deal with the environmental heterogeneity of alternating seasons. In contrast to natural situations, experimental studies of plasticity often use environmental conditions that are held constant during development. To explore potential interactions between day and night temperatures, we tested effects of circadian temperature fluctuations on thermally plastic traits in a seasonally plastic butterfly, Bicyclus anynana. Comparing phenotypes for four treatments corresponding to a full-factorial analysis of cooler and warmer temperatures, we found evidence of significant interaction effects between day and night temperatures. We then focused on comparing phenotypes between individuals reared under two types of temperature fluctuations (warmer days with cooler nights, and cooler days with warmer nights) and individuals reared under a constant temperature of the same daily mean. We found evidence of additive-like effects (for body size), and different types of dominance-like effects, with one particular period of the light cycle (for development time) or one particular extreme temperature (for eyespot size) having a larger impact on phenotype. Differences between thermally plastic traits, which together underlie alternative seasonal strategies for survival and reproduction, revealed their independent responses to temperature. This study underscores the value of studying how organisms integrate complex environmental information toward a complete understanding of natural phenotypic variation and of the impact of environmental change thereon.


Assuntos
Borboletas , Plásticos , Adaptação Fisiológica , Animais , Humanos , Fenótipo , Estações do Ano , Temperatura
5.
Ecol Lett ; 24(1): 102-112, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33099881

RESUMO

New ecological niches that may arise due to climate change can trigger diversification, but their colonisation often requires adaptations in a suite of life-history traits. We test this hypothesis in species-rich Mycalesina butterflies that have undergone parallel radiations in Africa, Asia, and Madagascar. First, our ancestral state reconstruction of habitat preference, using c. 85% of extant species, revealed that early forest-linked lineages began to invade seasonal savannahs during the late Miocene-Pliocene. Second, rearing replicate pairs of forest and savannah species from the African and Malagasy radiation in a common garden experiment, and utilising published data from the Asian radiation, demonstrated that savannah species consistently develop faster, have smaller bodies, higher fecundity with an earlier investment in reproduction, and reduced longevity, compared to forest species across all three radiations. We argue that time-constraints for reproduction favoured the evolution of a faster pace-of-life in savannah species that facilitated their persistence in seasonal habitats.


Assuntos
Borboletas , África , Animais , Evolução Biológica , Madagáscar , Filogenia , Estações do Ano
6.
Proc Biol Sci ; 287(1941): 20202577, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33323089

RESUMO

Variation in environmental conditions during development can lead to changes in life-history traits with long-lasting effects. Here, we study how variation in temperature and host plant (i.e. the consequences of potential maternal oviposition choices) affects a suite of life-history traits in pre-diapause larvae of the Glanville fritillary butterfly. We focus on offspring survival, larval growth rates and relative fat reserves, and pay specific attention to intraspecific variation in the responses (G × E × E). Globally, thermal performance and survival curves varied between diets of two host plants, suggesting that host modifies the temperature impact, or vice versa. Additionally, we show that the relative fat content has a host-dependent, discontinuous response to developmental temperature. This implies that a potential switch in resource allocation, from more investment in growth at lower temperatures to storage at higher temperatures, is dependent on the larval diet. Interestingly, a large proportion of the variance in larval performance is explained by differences among families, or interactions with this variable. Finally, we demonstrate that these family-specific responses to the host plant remain largely consistent across thermal environments. Together, the results of our study underscore the importance of paying attention to intraspecific trait variation in the field of evolutionary ecology.


Assuntos
Borboletas/fisiologia , Fritillaria/fisiologia , Temperatura , Animais , Evolução Biológica , Ecologia , Feminino , Larva , Oviposição , Fenótipo , Plantas
7.
Proc Natl Acad Sci U S A ; 117(44): 27474-27480, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33093195

RESUMO

Development can bias the independent evolution of traits sharing ontogenetic pathways, making certain evolutionary changes less likely. The eyespots commonly found on butterfly wings each have concentric rings of differing colors, and these serially repeated pattern elements have been a focus for evo-devo research. In the butterfly family Nymphalidae, eyespots have been shown to function in startling or deflecting predators and to be involved in sexual selection. Previous work on a model species of Mycalesina butterfly, Bicyclus anynana, has provided insights into the developmental control of the size and color composition of individual eyespots. Experimental evolution has also shown that the relative size of a pair of eyespots on the same wing surface is highly flexible, whereas they are resistant to diverging in color composition, presumably due to the underlying shared developmental process. This fixed color composition has been considered as a prime example of developmental bias with significant consequences for wing pattern evolution. Here, we test this proposal by surveying eyespots across the whole subtribe of Mycalesina butterflies and demonstrate that developmental bias shapes evolutionary diversification except in the genus Heteropsis which has gained independent control of eyespot color composition. Experimental manipulations of pupal wings reveal that the bias has been released through a novel regional response of the wing tissue to a conserved patterning signal. Our study demonstrates that development can bias the evolutionary independence of traits, but it also shows how bias can be released through developmental innovations, thus, allowing rapid morphological change, facilitating evolutionary diversification.


Assuntos
Padronização Corporal/genética , Borboletas/fisiologia , Especiação Genética , Pigmentação/genética , Asas de Animais/crescimento & desenvolvimento , Animais , Borboletas/anatomia & histologia , Cor , Genoma de Inseto/genética , Masculino
8.
Conserv Biol ; 34(6): 1503-1511, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32298001

RESUMO

The ecological impacts of extreme climatic events on population dynamics and community composition are profound and predominantly negative. Using extensive data of an ecological model system, we tested whether predictions from ecological models remain robust when environmental conditions are outside the bounds of observation. We observed a 10-fold demographic decline of the Glanville fritillary butterfly (Melitaea cinxia) metapopulation on the Åland islands, Finland in the summer of 2018 and used climatic and satellite data to demonstrate that this year was an anomaly with low climatic water balance values and low vegetation productivity indices across Åland. Population growth rates were strongly associated with spatiotemporal variation in climatic water balance. Covariates shown previously to affect the extinction probability of local populations in this metapopulation were less informative when populations were exposed to severe drought during the summer months. Our results highlight the unpredictable responses of natural populations to extreme climatic events.


El Efecto de la Sequía Estival sobre la Previsibilidad de las Extinciones Locales en una Metapoblación de Mariposas Resumen Los impactos ecológicos de los eventos climáticos extremos sobre las dinámicas metapoblacionales y la composición de la comunidad son profundos y predominantemente negativos. Con los extensos datos de un sistema de modelos ecológicos probamos si las predicciones de los modelos ecológicos todavía son sólidos cuando las condiciones ambientales se encuentran fuera de los límites de observación. Observamos una declinación demográfica ocurrir diez veces en la metapoblación de la mariposa Melitaea cinxia en las Islas Aland de Finlandia durante el verano de 2018. Usamos datos climáticos y satelitales para demostrar que ese año fue una anomalía al contar con valores bajos de balance hídrico e índices bajos de productividad de la vegetación en todas las islas. Las tasas de crecimiento poblacional estuvieron fuertemente asociadas con la variación espaciotemporal del balance hídrico climático. Las covarianzas que previamente han afectado a la probabilidad de extinción de las poblaciones locales de esta metapoblación fueron menos informativas cuando las poblaciones estuvieron expuestas a sequías severas durante los meses de verano. Nuestros resultados resaltan las respuestas impredecibles de las poblaciones naturales ante los eventos climáticos extremos.


Assuntos
Borboletas , Animais , Conservação dos Recursos Naturais , Secas , Finlândia , Dinâmica Populacional , Estações do Ano
9.
Evol Lett ; 3(3): 313-320, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31171986

RESUMO

Effective anti-predatory strategies typically require matching appearance and behavior in prey, and there are many compelling examples of behavioral repertoires that enhance the effectiveness of morphological defenses. When protective adult morphology is induced by developmental environmental conditions predictive of future predation risk, adult behavior should be adjusted accordingly to maximize predator avoidance. While behavior is typically strongly affected by the adult environment, developmental plasticity in adult behavior-mediated by the same pre-adult environmental cues that affect morphology-could ensure an effective match between anti-predatory morphology and behavior. The coordination of environmentally induced responses may be especially important in populations exposed to predictable environmental fluctuations (e.g., seasonality). Here, we studied early and late life environmental effects on a suite of traits expected to work together for effective crypsis. We focused on wing color and background color preference in Bicyclus anynana, a model of developmental plasticity that relies on crypsis as a seasonal strategy for predator avoidance. Using a full-factorial design, we disentangled effects of developmental and adult ambient temperature on both appearance and behavior. We showed that developmental conditions affect both adult color and color preference, with temperatures that simulate natural dry season conditions leading to browner butterflies with a perching preference for brown backgrounds. This effect was stronger in females, especially when butterflies were tested at lower ambient temperatures. In contrast to the expectation that motionlessness enhances crypsis, we found no support for our hypothesis that the browner dry-season butterflies would be less active. We argue that the integration of developmental plasticity for morphological and behavioral traits might improve the effectiveness of seasonal anti-predatory strategies.

10.
11.
BMC Evol Biol ; 17(1): 59, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28241743

RESUMO

BACKGROUND: Developmental plasticity is thought to have profound macro-evolutionary effects, for example, by increasing the probability of establishment in new environments and subsequent divergence into independently evolving lineages. In contrast to plasticity optimized for individual traits, phenotypic integration, which enables a concerted response of plastic traits to environmental variability, may affect the rate of local adaptation by constraining independent responses of traits to selection. Using a comparative framework, this study explores the evolution of reaction norms for a variety of life history and morphological traits across five related species of mycalesine butterflies from the Old World tropics. RESULTS: Our data indicate that an integrated response of a suite of key traits is shared amongst these species. Interestingly, the traits that make up the functional suite are all known to be regulated by ecdysteroid signalling in Bicyclus anynana, one of the species included in this study, suggesting the same underlying hormonal regulator may be conserved within this group of polyphenic butterflies. We also detect developmental thresholds for the expression of alternative morphs. CONCLUSIONS: The phenotypic plasticity of a broad suite of morphological and life history traits is integrated and shared among species from three geographically independent lineages of mycalesine butterflies, despite considerable periods of independent evolution and exposure to disparate environments. At the same time, we have detected examples of evolutionary change where independent traits show different patterns of reaction norms. We argue that the expression of more robust phenotypes may occur by shifting developmental thresholds beyond the boundaries of the typical environmental variation.


Assuntos
Borboletas/anatomia & histologia , Borboletas/crescimento & desenvolvimento , Asas de Animais/anatomia & histologia , Adaptação Fisiológica , Animais , Evolução Biológica , Tamanho Corporal , Borboletas/química , Borboletas/genética , Meio Ambiente , Feminino , Estágios do Ciclo de Vida , Masculino
12.
Ecol Evol ; 6(15): 5246-55, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27551380

RESUMO

The Miocene radiation of C4 grasses under high-temperature and low ambient CO 2 levels occurred alongside the transformation of a largely forested landscape into savanna. This inevitably changed the host plant regime of herbivores, and the simultaneous diversification of many consumer lineages, including Bicyclus butterflies in Africa, suggests that the radiations of grasses and grazers may be evolutionary linked. We examined mechanisms for this plant-herbivore interaction with the grass-feeding Bicyclus safitza in South Africa. In a controlled environment, we tested oviposition preference and hatchling performance on local grasses with C3 or C4 photosynthetic pathways that grow either in open or shaded habitats. We predicted preference for C3 plants due to a hypothesized lower processing cost and higher palatability to herbivores. In contrast, we found that females preferred C4 shade grasses rather than either C4 grasses from open habitats or C3 grasses. The oviposition preference broadly followed hatchling performance, although hatchling survival was equally good on C4 or C3 shade grasses. This finding was explained by leaf toughness; shade grasses were softer than grasses from open habitats. Field monitoring revealed a preference of adults for shaded habitats, and stable isotope analysis of field-sampled individuals confirmed their preference for C4 grasses as host plants. Our findings suggest that plant-herbivore interactions can influence the direction of selection in a grass-feeding butterfly. Based on this work, we postulate future research to test whether these interactions more generally contribute to radiations in herbivorous insects via expansions into new, unexploited ecological niches.

13.
Proc Biol Sci ; 280(1758): 20130102, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23466986

RESUMO

Inbreeding depression results from mating among genetically related individuals and impairs reproductive success. The decrease in male mating success is usually attributed to an impact on multiple fitness-related traits that reduce the general condition of inbred males. Here, we find that the production of the male sex pheromone is reduced significantly by inbreeding in the butterfly Bicyclus anynana. Other traits indicative of the general condition, including flight performance, are also negatively affected in male butterflies by inbreeding. Yet, we unambiguously show that only the production of male pheromones affects mating success. Thus, this pheromone signal informs females about the inbreeding status of their mating partners. We also identify the specific chemical component (hexadecanal) probably responsible for the decrease in male mating success. Our results advocate giving increased attention to olfactory communication as a major causal factor of mate-choice decisions and sexual selection.


Assuntos
Borboletas/fisiologia , Atrativos Sexuais/metabolismo , Aldeídos/metabolismo , Animais , Antenas de Artrópodes/fisiologia , Borboletas/genética , Álcoois Graxos/metabolismo , Feminino , Voo Animal , Endogamia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA