Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
2.
Sci Rep ; 13(1): 7868, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188794

RESUMO

Individual-specific networks, defined as networks of nodes and connecting edges that are specific to an individual, are promising tools for precision medicine. When such networks are biological, interpretation of functional modules at an individual level becomes possible. An under-investigated problem is relevance or "significance" assessment of each individual-specific network. This paper proposes novel edge and module significance assessment procedures for weighted and unweighted individual-specific networks. Specifically, we propose a modular Cook's distance using a method that involves iterative modeling of one edge versus all the others within a module. Two procedures assessing changes between using all individuals and using all individuals but leaving one individual out (LOO) are proposed as well (LOO-ISN, MultiLOO-ISN), relying on empirically derived edges. We compare our proposals to competitors, including adaptions of OPTICS, kNN, and Spoutlier methods, by an extensive simulation study, templated on real-life scenarios for gene co-expression and microbial interaction networks. Results show the advantages of performing modular versus edge-wise significance assessments for individual-specific networks. Furthermore, modular Cook's distance is among the top performers across all considered simulation settings. Finally, the identification of outlying individuals regarding their individual-specific networks, is meaningful for precision medicine purposes, as confirmed by network analysis of microbiome abundance profiles.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Humanos , Simulação por Computador
3.
Front Microbiol ; 14: 1170391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256048

RESUMO

Longitudinal analysis of multivariate individual-specific microbiome profiles over time or across conditions remains dauntin. Most statistical tools and methods that are available to study microbiomes are based on cross-sectional data. Over the past few years, several attempts have been made to model the dynamics of bacterial species over time or across conditions. However, the field needs novel views on handling microbial interactions in temporal analyses. This study proposes a novel data analysis framework, MNDA, that combines representation learning and individual-specific microbial co-occurrence networks to uncover taxon neighborhood dynamics. As a use case, we consider a cohort of newborns with microbiomes available at 6 and 9 months after birth, and extraneous data available on the mode of delivery and diet changes between the considered time points. Our results show that prediction models for these extraneous outcomes based on an MNDA measure of local neighborhood dynamics for each taxon outperform traditional prediction models solely based on individual-specific microbial abundances. Furthermore, our results show that unsupervised similarity analysis of newborns in the study, again using the notion of a taxon's dynamic neighborhood derived from time-matched individual-specific microbial networks, can reveal different subpopulations of individuals, compared to standard microbiome-based clustering, with potential relevance to clinical practice. This study highlights the complementarity of microbial interactions and abundances in downstream analyses and opens new avenues to personalized prediction or stratified medicine with temporal microbiome data.

4.
Immunity ; 56(6): 1220-1238.e7, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37130522

RESUMO

Early-life immune development is critical to long-term host health. However, the mechanisms that determine the pace of postnatal immune maturation are not fully resolved. Here, we analyzed mononuclear phagocytes (MNPs) in small intestinal Peyer's patches (PPs), the primary inductive site of intestinal immunity. Conventional type 1 and 2 dendritic cells (cDC1 and cDC2) and RORgt+ antigen-presenting cells (RORgt+ APC) exhibited significant age-dependent changes in subset composition, tissue distribution, and reduced cell maturation, subsequently resulting in a lack in CD4+ T cell priming during the postnatal period. Microbial cues contributed but could not fully explain the discrepancies in MNP maturation. Type I interferon (IFN) accelerated MNP maturation but IFN signaling did not represent the physiological stimulus. Instead, follicle-associated epithelium (FAE) M cell differentiation was required and sufficient to drive postweaning PP MNP maturation. Together, our results highlight the role of FAE M cell differentiation and MNP maturation in postnatal immune development.


Assuntos
Células M , Nódulos Linfáticos Agregados , Intestinos , Intestino Delgado , Diferenciação Celular , Mucosa Intestinal
5.
Sci Rep ; 12(1): 20189, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424459

RESUMO

The human gut microbiota has been shown to be significantly perturbed by antibiotic use, while recovering to the pre-treatment state several weeks after short antibiotic exposure. The effects of antibiotics on the gut microbiota have however been mainly documented in high-income settings with lower levels of antibiotic resistance as compared to lower and middle income countries (LMIC). This study aimed to examine the long-term consequences of repeated exposure to commonly use antibiotics on the fecal microbiota of residents living in a low income setting with high prevalence of antibiotic resistance. Fecal samples from household individuals (n = 63) participating in a rural cohort in northern Vietnam were collected monthly for a period of 6 months. Using 16S V4 rRNA gene region amplicon sequencing and linear mixed-effects models analysis, we observed only a minor and transient effect of antibiotics on the microbial richness (ß = - 31.3, 95%CI = - 55.3, - 7.3, p = 0.011), while the microbial diversity was even less affected (ß = - 0.298, 95%CI - 0.686, 0.090, p = 0.132). Principal Component Analyses (PCA) did not reveal separation of samples into distinct microbiota-based clusters by antibiotics use, suggesting the microbiota composition was not affected by the antibiotics commonly used in this population. Additionally, the fecal microbial diversity of the subjects in our study cohort was lower when compared to that of healthy Dutch adults (median 3.95 (IQR 3.72-4.13) vs median 3.69 (IQR3.31-4.11), p = 0.028, despite the higher dietary fiber content in the Vietnamese as compared to western diet. Our findings support the hypothesis that frequent antibiotic exposure may push the microbiota to a different steady state that is less diverse but more resilient to disruption by subsequent antibiotic use.


Assuntos
Microbioma Gastrointestinal , Adulto , Humanos , Microbioma Gastrointestinal/genética , Antibacterianos/efeitos adversos , Vietnã , Estudos de Coortes , Povo Asiático
6.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628138

RESUMO

Dietary advanced glycation endproducts (AGEs), abundantly present in Westernized diets, are linked to negative health outcomes, but their impact on the gut microbiota has not yet been well investigated in humans. We investigated the effects of a 4-week isocaloric and macronutrient-matched diet low or high in AGEs on the gut microbial composition of 70 abdominally obese individuals in a double-blind parallel-design randomized controlled trial (NCT03866343). Additionally, we investigated the cross-sectional associations between the habitual intake of dietary dicarbonyls, reactive precursors to AGEs, and the gut microbial composition, as assessed by 16S rRNA amplicon-based sequencing. Despite a marked percentage difference in AGE intake, we observed no differences in microbial richness and the general community structure. Only the Anaerostipes spp. had a relative abundance >0.5% and showed differential abundance (0.5 versus 1.11%; p = 0.028, after low- or high-AGE diet, respectively). While the habitual intake of dicarbonyls was not associated with microbial richness or a general community structure, the intake of 3-deoxyglucosone was especially associated with an abundance of several genera. Thus, a 4-week diet low or high in AGEs has a limited impact on the gut microbial composition of abdominally obese humans, paralleling its previously observed limited biological consequences. The effects of dietary dicarbonyls on the gut microbiota composition deserve further investigation.


Assuntos
Microbioma Gastrointestinal , Produtos Finais de Glicação Avançada , Obesidade , Estudos Transversais , Dieta , Método Duplo-Cego , Produtos Finais de Glicação Avançada/administração & dosagem , Humanos , Obesidade/dietoterapia , Obesidade/microbiologia , RNA Ribossômico 16S/genética
8.
J Proteome Res ; 20(11): 5079-5087, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34587745

RESUMO

While substantial efforts have been made to optimize and standardize fecal metabolomics for studies in adults, the development of a standard protocol to analyze infant feces is, however, still lagging behind. Here, we present the development of a hands-on and robust protocol for proton 1H NMR spectroscopy of infant feces. The influence of extraction solvent, dilution ratio, homogenization method, filtration, and duration of centrifugation on the biochemical composition of infant feces was carefully evaluated using visual inspection of 1H NMR spectra in combination with multivariate statistical modeling. The optimal metabolomics protocol was subsequently applied on feces from seven infants collected at 8 weeks, 4, and 9 months of age. Interindividual variation was exceeding the variation induced by different fecal sample preparation methods, except for filtration. We recommend extracting fecal samples using water with a dilution ratio of 1:5 feces-to-water to homogenize using bead beating and to remove particulates using centrifugation. Samples collected from infants aged 8 weeks and 4 months showed elevated concentrations of milk oligosaccharide derivatives and lactic acid, whereas short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) were higher in the 9 month samples. The established protocol enables hands-on and robust analyses of the infant gut metabolome. The wide-ranging application of this protocol will facilitate interlaboratory comparison of infants' metabolic profiles and finally aid in a better understanding of infant gut health.


Assuntos
Metaboloma , Metabolômica , Adulto , Ácidos Graxos Voláteis/análise , Fezes/química , Humanos , Lactente , Recém-Nascido , Espectroscopia de Ressonância Magnética , Metabolômica/métodos
9.
Nutrients ; 13(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34444798

RESUMO

The introduction of solid foods is an important dietary event during infancy that causes profound shifts in the gut microbial composition towards a more adult-like state. Infant gut bacterial dynamics, especially in relation to nutritional intake remain understudied. Over 2 weeks surrounding the time of solid food introduction, the day-to-day dynamics in the gut microbiomes of 24 healthy, full-term infants from the Baby, Food & Mi and LucKi-Gut cohort studies were investigated in relation to their dietary intake. Microbial richness (observed species) and diversity (Shannon index) increased over time and were positively associated with dietary diversity. Microbial community structure (Bray-Curtis dissimilarity) was determined predominantly by individual and age (days). The extent of change in community structure in the introductory period was negatively associated with daily dietary diversity. High daily dietary diversity stabilized the gut microbiome. Bifidobacterial taxa were positively associated, while taxa of the genus Veillonella, that may be the same species, were negatively associated with dietary diversity in both cohorts. This study furthers our understanding of the impact of solid food introduction on gut microbiome development in early life. Dietary diversity seems to have the greatest impact on the gut microbiome as solids are introduced.


Assuntos
Microbioma Gastrointestinal , Alimentos Infantis , Bactérias/classificação , Biodiversidade , Estudos de Coortes , Dieta , Ingestão de Alimentos , Fezes/microbiologia , Feminino , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Masculino , Países Baixos , Filogenia , RNA Ribossômico 16S
10.
PLoS One ; 16(4): e0248924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33798237

RESUMO

The first exposures to microbes occur during infancy and it is suggested that this initial colonization influences the adult microbiota composition. Despite the important role that the gut microbiome may have in health outcomes later in life, the factors that influence its development during infancy and early childhood have not been characterized fully. Guidelines about the introduction of solid foods and cessation of breastfeeding, which is thought to have a significant role in the transition to a more adult-like microbiota, are not based on microbiome research. There is even less understanding of approaches used to transition to solid food in the preterm population. The purpose of this study is to identify the impact of early life dietary events on gut microbiome community structures and function among infants born at term and pre-term. We plan to prospectively monitor the gut microbiome of infants during two critical timepoints in microbial development: the introduction of solid foods and cessation from breastmilk. A total of 35 participants from three primary observational birth cohorts (two full-term cohorts and one pre-term cohort) will be enrolled in this sub-study. Participants will be asked to collect stool samples and fill out a study diary before, during and after the introduction of solids and again during weaning from breastmilk. We will use frequent fecal sampling analyzed using 16S rRNA gene profiling, metagenomics, metabolomics, and targeted bacterial culturing to identify and characterize the microbial communities, as well as provide insight into the phenotypic characteristics and functional capabilities of the microbes present during these transitional periods of infancy. This study will provide a comprehensive approach to detailing the effects of dietary transition from breastmilk to a more adult-like solid food diet on the microbiome and in doing so will contribute to evidence-based infant nutrition guidance.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal , Desmame , Estudos de Coortes , Dieta , Humanos , Lactente
11.
Int J Med Microbiol ; 311(3): 151498, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33774478

RESUMO

The enteric microbiota exerts a major influence on the host. It promotes food degradation, nutrient absorption, immune maturation and protects from infection with pathogenic microorganisms. However, certain compositional alterations also enhance the risk to develop metabolic, inflammatory and immune-mediated diseases. This suggests that the enteric microbiota is subject to strong evolutionary pressure. Here, we hypothesize that endogenous, genetically determined mechanisms exist that shape and optimize the enteric microbiota. We discuss that the postnatal period as the starting point of the host-microbial interaction bears the greatest chance to identify such regulatory mechanisms and report on two recently identified ways how the neonate host favours or disfavours colonization by certain bacteria and thereby manipulates the postnatally emerging bacterial ecosystem. A better understanding of these mechanisms might ultimately help to define the features of a beneficial enteric microbiota and to develop interventional strategies to overcome adverse microbiota alterations.


Assuntos
Microbiota , Animais , Bactérias , Humanos , Recém-Nascido
12.
Sci Transl Med ; 12(565)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33055245

RESUMO

Although infection with the human enteropathogen Giardia lamblia causes self-limited diarrhea in adults, infant populations in endemic areas experience persistent pathogen carriage in the absence of diarrhea. The persistence of this protozoan parasite in infants has been associated with reduced weight gain and linear growth (height-for-age). The mechanisms that support persistent infection and determine the different disease outcomes in the infant host are incompletely understood. Using a neonatal mouse model of persistent G. lamblia infection, we demonstrate that G. lamblia induced bile secretion and used the bile constituent phosphatidylcholine as a substrate for parasite growth. In addition, we show that G. lamblia infection altered the enteric microbiota composition, leading to enhanced bile acid deconjugation and increased expression of fibroblast growth factor 15. This resulted in elevated energy expenditure and dysregulated lipid metabolism with reduced adipose tissue, body weight gain, and growth in the infected mice. Our results indicate that this enteropathogen's modulation of bile acid metabolism and lipid metabolism in the neonatal mouse host led to an altered body composition, suggesting how G. lamblia infection could contribute to growth restriction in infants in endemic areas.


Assuntos
Microbioma Gastrointestinal , Giardíase , Animais , Bile , Giardia , Homeostase , Camundongos
13.
Gut Microbes ; 12(1): 1-16, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095113

RESUMO

BACKGROUND: Oral administration of probiotic bacteria to preterm neonates has been recommended to prevent the development of necrotizing enterocolitis (NEC). The influence of probiotics on the endogenous microbiome, however, has remained incompletely understood. STUDY DESIGN & METHODS: Here, we performed an observational study including 80 preterm neonates born at a gestational age <32-weeks to characterize the persistence of probiotic bacteria after no treatment or oral administration of two different probiotic formula and their influence on the microbial ecosystem during and after the intervention and their association with the development of NEC. Weekly fecal samples were profiled by 16S rRNA sequencing and monitored for the presence of the probiotic bacteria by quantitative PCR. RESULTS: Microbiota profiles differed significantly between the control group and both probiotic groups. Probiotic supplementation was associated with lower temporal variation as well as higher relative abundance of Bifidobacterium and Enterobacter combined with reduced abundance of Escherichia, Enterococcus, and Klebsiella. Colonization by probiotic bifidobacteria was observed in approximately 50% of infants although it remained transient in the majority of cases. A significantly reduced monthly incidence of NEC was observed in neonates supplemented with probiotics. CONCLUSION: Our results demonstrate successful transient colonization by probiotic bacteria and a significant influence on the endogenous microbiota with a reduced abundance of bacterial taxa associated with the development of NEC. These results emphasize that probiotic supplementation may allow targeted manipulation of the enteric microbiota and confer a clinical benefit. (Clinical Trial Registry accession number: DRKS/GCTR 00021034).


Assuntos
Bactérias/classificação , Suplementos Nutricionais , Enterocolite Necrosante/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Probióticos/farmacologia , Bactérias/isolamento & purificação , Fezes/microbiologia , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido/prevenção & controle , Recém-Nascido Prematuro/crescimento & desenvolvimento , Estudos Longitudinais , Probióticos/administração & dosagem
14.
Artigo em Inglês | MEDLINE | ID: mdl-32850498

RESUMO

Next-generation sequencing (NGS) has instigated the research on the role of the microbiome in health and disease. The compositional nature of such microbiome datasets makes it however challenging to identify those microbial taxa that are truly associated with an intervention or health outcome. Quantitative microbiome profiling overcomes the compositional structure of microbiome sequencing data by integrating absolute quantification of microbial abundances into the NGS data. Both cell-based methods (e.g., flow cytometry) and molecular methods (qPCR) have been used to determine the absolute microbial abundances, but to what extent different quantification methods generate similar quantitative microbiome profiles has so far not been explored. Here we compared relative microbiome profiling (without incorporation of microbial quantification) to three variations of quantitative microbiome profiling: (1) microbial cell counting using flow cytometry (QMP), (2) counting of microbial cells using flow cytometry combined with Propidium Monoazide pre-treatment of fecal samples before metagenomics DNA isolation in order to only profile the microbial composition of intact cells (QMP-PMA), and (3) molecular based quantification of the microbial load using qPCR targeting the 16S rRNA gene. Although qPCR and flow cytometry both resulted in accurate and strongly correlated results when quantifying the bacterial abundance of a mock community of bacterial cells, the two methods resulted in highly divergent quantitative microbial profiles when analyzing the microbial composition of fecal samples from 16 healthy volunteers. These differences could not be attributed to the presence of free extracellular prokaryotic DNA in the fecal samples as sample pre-treatment with Propidium Monoazide did not improve the concordance between qPCR-based and flow cytometry-based QMP. Also lack of precision of qPCR was ruled out as a major cause of the disconcordant findings, since quantification of the fecal microbial load by the highly sensitive digital droplet PCR correlated strongly with qPCR. In conclusion, quantitative microbiome profiling is an elegant approach to bypass the compositional nature of microbiome NGS data, however it is important to realize that technical sources of variability may introduce substantial additional bias depending on the quantification method being used.


Assuntos
Microbiota , Bactérias/genética , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Ribossômico 16S/genética
15.
Gut Microbes ; 12(1): 1782163, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32715918

RESUMO

Non-communicable diseases, such as the metabolic syndrome and inflammatory bowel disease, constitute serious public health threats in developed countries. Besides environmental factors, genetic predispositions contribute to the onset and progression of the disease. State-of-the-art mouse models recently highlight the involvement of Toll-like receptor 5 (TLR5)-driven microbiota composition in the development of metabolic disorders. Here, we discuss the causes and consequences of an altered enteric microbiota and provide information on a similar mechanism in another species, the pig. We show for the first time that a single nucleotide polymorphism in the porcine TLR5 gene conferring impaired functionality is associated with changes in the intestinal microbiota in adult sows and neonatal piglets. Changes in the developing adaptive cellular immune response support the concept of TLR5-driven changes of the microbe-host interplay also in the pig. Together, these findings suggest that pigs with impaired TLR-functionality might represent a model for TLR5-driven diseases in humans.


Assuntos
Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/genética , Síndrome Metabólica/genética , Receptor 5 Toll-Like/genética , Imunidade Adaptativa , Animais , Fezes/microbiologia , Microbioma Gastrointestinal , Predisposição Genética para Doença/genética , Genótipo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Síndrome Metabólica/imunologia , Síndrome Metabólica/microbiologia , Polimorfismo de Nucleotídeo Único , Suínos
16.
Gastroenterology ; 158(6): 1584-1596, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31958431

RESUMO

BACKGROUND & AIMS: Establishment of the gastrointestinal microbiota during infancy affects immune system development and oral tolerance induction. Perturbations in the microbiome during this period can contribute to development of immune-mediated diseases. We monitored microbiota maturation and associations with subsequent development of allergies in infants and children. METHODS: We collected 1453 stool samples, at 5, 13, 21, and 31 weeks postpartum (infants), and once at school age (6-11 years), from 440 children (49.3% girls, 24.8% born by cesarean delivery; all children except for 6 were breastfed for varying durations; median 40 weeks; interquartile range, 30-53 weeks). Microbiota were analyzed by amplicon sequencing. Children were followed through 3 years of age for development of atopic dermatitis; data on allergic sensitization and asthma were collected when children were school age. RESULTS: Diversity of fecal microbiota, assessed by Shannon index, did not differ significantly among children from 5 through 13 weeks after birth, but thereafter gradually increased to 21 and 31 weeks. Most bacteria within the Bacteroidetes and Proteobacteria phyla were already present at 5 weeks after birth, whereas many bacteria of the Firmicutes phylum were acquired at later times in infancy. At school age, many new Actinobacteria, Firmicutes, and Bacteroidetes bacterial taxa emerged. The largest increase in microbial diversity occurred after 31 weeks. Vaginal, compared with cesarean delivery, was most strongly associated with an enrichment of Bacteroides species at 5 weeks through 31 weeks. From 13 weeks onward, diet became the most important determinant of microbiota composition; cessation of breastfeeding, rather than solid food introduction, was associated with changes. For example, Bifidobacteria, staphylococci, and streptococci significantly decreased on cessation of breastfeeding, whereas bacteria within the Lachnospiraceae family (Pseudobutyrivibrio, Lachnobacterium, Roseburia, and Blautia) increased. When we adjusted for confounding factors, we found fecal microbiota composition to be associated with development of atopic dermatitis, allergic sensitization, and asthma. Members of the Lachnospiraceae family, as well as the genera Faecalibacterium and Dialister, were associated with a reduced risk of atopy. CONCLUSIONS: In a longitudinal study of fecal microbiota of children from 5 weeks through 6 to 11 years, we tracked changes in diversity and composition associated with the development of allergies and asthma.


Assuntos
Asma/epidemiologia , Aleitamento Materno/estatística & dados numéricos , Cesárea/estatística & dados numéricos , Desenvolvimento Infantil/fisiologia , Dermatite Atópica/epidemiologia , Microbioma Gastrointestinal/imunologia , Asma/imunologia , Asma/microbiologia , Bactérias/genética , Bactérias/imunologia , Bactérias/isolamento & purificação , Criança , Fatores de Confusão Epidemiológicos , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Fezes/microbiologia , Feminino , Seguimentos , Microbioma Gastrointestinal/genética , Humanos , Imunidade nas Mucosas/fisiologia , Lactente , Estudos Longitudinais , Masculino , RNA Ribossômico 16S/genética
18.
Mucosal Immunol ; 12(1): 97-107, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327531

RESUMO

Oral tolerance to soluble antigens is critically important for the maintenance of immunological homeostasis in the gut. The mechanisms of tolerance induction to antigens of the gut microbiota are still less well understood. Here, we investigate whether the subcellular localization of antigens within non-pathogenic E. coli has a role for its ability to induce antigen-specific tolerance. E. coli that express an ovalbumin (OVA) peptide in the cytoplasm, at the outer membrane or as secreted protein were generated. Intestinal colonization of mice with non-pathogenic E. coli expressing OVA at the membrane induced the expansion of antigen-specific Foxp3+ Tregs and mediated systemic immune tolerance. In contrast, cytoplasmic OVA was ignored by antigen-specific CD4+ T cells and failed to induce tolerance. In vitro experiments revealed that surface-displayed OVA of viable E. coli was about two times of magnitude more efficient to activate antigen-specific CD4+ T cells than soluble antigens, surface-displayed antigens of heat-killed E. coli or cytoplasmic antigen of viable or heat-killed E. coli. This effect was independent of the antigen uptake efficiency in dendritic cells. In summary, our results show that subcellular antigen localization in viable E. coli strongly influences antigen-specific CD4+ cell expansion and tolerance induction upon intestinal colonization.


Assuntos
Escherichia coli/fisiologia , Microbioma Gastrointestinal/fisiologia , Linfócitos T Reguladores/imunologia , Administração Oral , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/metabolismo , Homeostase , Tolerância Imunológica , Espaço Intracelular , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microrganismos Geneticamente Modificados , Ovalbumina/genética , Ovalbumina/imunologia , Peptídeos/genética , Peptídeos/imunologia , Simbiose
19.
Front Microbiol ; 8: 355, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344572

RESUMO

The gut microbiota represents a complex and diverse ecosystem with a profound impact on human health, promoting immune maturation, and host metabolism as well as colonization resistance. Important members that have often been disregarded are the methanogenic archaea. Methanogenic archaea reduce hydrogen levels via the production of methane, thereby stimulating food fermentation by saccharolytic bacteria. On the other hand, colonization by archaea has been suggested to promote a number of gastrointestinal and metabolic diseases such as colorectal cancer, inflammatory bowel disease, and obesity. Archaea have been shown to be absent during infancy while omnipresent in school-aged children, suggesting that colonization may result from environmental exposure during childhood. The factors that determine the acquisition of methanogenic archaea, however, have remained undefined. Therefore, we aimed to explore determinants associated with the acquisition of the two main gastrointestinal archaeal species, Methanobrevibacter smithii and Methanosphaera stadtmanae, in children. Within the context of the KOALA Birth Cohort Study, fecal samples from 472 children aged 6-10 years were analyzed for the abundance of M. smithii and M. stadtmanae using qPCR. Environmental factors such as diet, lifestyle, hygiene, child rearing, and medication were recorded by repeated questionnaires. The relationship between these determinants and the presence and abundance of archaea was analyzed by logistic and linear regression respectively. Three hundred and sixty-nine out of the 472 children (78.2%) were colonized by M. smithii, and 39 out of the 472 children (8.3%) by M. stadtmanae. The consumption of organic yogurt (odds ratio: 4.25, CI95: 1.51; 11.95) and the consumption of organic milk (odds ratio: 5.58, CI95: 1.83; 17.01) were positively associated with the presence of M. smithii. We subsequently screened raw milk, processed milk, and yogurt samples for methanogens. We identified milk products as possible source for M. smithii, but not M. stadtmanae. In conclusion, M. smithii seems present in milk products and their consumption may determine archaeal gut colonization in children. For the first time, a large variety of determinants have been explored in association with gut colonization by methanogenic archaea. Although more information is needed to confirm and unravel the mechanisms in detail, it provides new insights on microbial colonization processes in early life.

20.
Nat Commun ; 7: 11869, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27323669

RESUMO

Receptor-interacting protein kinase 3 (RIPK3) mediates necroptosis, a form of programmed cell death that promotes inflammation in various pathological conditions, suggesting that it might be a privileged pharmacological target. However, its function in glucose homeostasis and obesity has been unknown. Here we show that RIPK3 is over expressed in the white adipose tissue (WAT) of obese mice fed with a choline-deficient high-fat diet. Genetic inactivation of Ripk3 promotes increased Caspase-8-dependent adipocyte apoptosis and WAT inflammation, associated with impaired insulin signalling in WAT as the basis for glucose intolerance. Similarly to mice, in visceral WAT of obese humans, RIPK3 is overexpressed and correlates with the body mass index and metabolic serum markers. Together, these findings provide evidence that RIPK3 in WAT maintains tissue homeostasis and suppresses inflammation and adipocyte apoptosis, suggesting that systemic targeting of necroptosis might be associated with the risk of promoting insulin resistance in obese patients.


Assuntos
Tecido Adiposo Branco/enzimologia , Deficiência de Colina/genética , Intolerância à Glucose/genética , Gordura Intra-Abdominal/enzimologia , Necrose/enzimologia , Obesidade/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Adipócitos/enzimologia , Adipócitos/patologia , Tecido Adiposo Branco/patologia , Animais , Apoptose/genética , Índice de Massa Corporal , Caspase 8/genética , Caspase 8/metabolismo , Colina/metabolismo , Deficiência de Colina/enzimologia , Deficiência de Colina/etiologia , Deficiência de Colina/patologia , Dieta Hiperlipídica , Regulação da Expressão Gênica , Intolerância à Glucose/enzimologia , Intolerância à Glucose/etiologia , Intolerância à Glucose/patologia , Homeostase , Humanos , Inflamação , Insulina/metabolismo , Resistência à Insulina , Gordura Intra-Abdominal/patologia , Masculino , Camundongos , Necrose/genética , Necrose/patologia , Obesidade/enzimologia , Obesidade/etiologia , Obesidade/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA