Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 134(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34730182

RESUMO

The WAVE regulatory complex (WRC) is the main activator of the Arp2/3 complex, promoting lamellipodial protrusions in migrating cells. The WRC is basally inactive but can be activated by Rac1 and phospholipids, and through phosphorylation. However, the in vivo relevance of the phosphorylation of WAVE proteins remains largely unknown. Here, we identified casein kinase I alpha (CK1α) as a regulator of WAVE, thereby controlling cell shape and cell motility in Drosophila macrophages. CK1α binds and phosphorylates WAVE in vitro. Phosphorylation of WAVE by CK1α appears not to be required for activation but, rather, regulates its stability. Pharmacologic inhibition of CK1α promotes ubiquitin-dependent degradation of WAVE. Consistently, loss of Ck1α but not ck2 function phenocopies the depletion of WAVE. Phosphorylation-deficient mutations in the CK1α consensus sequences within the VCA domain of WAVE can neither rescue mutant lethality nor lamellipodium defects. By contrast, phosphomimetic mutations rescue all cellular and developmental defects. Finally, RNAi-mediated suppression of 26S proteasome or E3 ligase complexes substantially rescues lamellipodia defects in CK1α-depleted macrophages. Therefore, we conclude that basal phosphorylation of WAVE by CK1α protects it from premature ubiquitin-dependent degradation, thus promoting WAVE function in vivo. This article has an associated First Person interview with the first author of the paper.


Assuntos
Caseína Quinase Ialfa , Caseína Quinase Ialfa/genética , Caseína Quinase Ialfa/metabolismo , Forma Celular , Humanos , Imunidade , Fosforilação , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
2.
J Cell Biol ; 220(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34431981

RESUMO

Depolarization drives neuronal plasticity. However, whether depolarization drives sensitization of peripheral nociceptive neurons remains elusive. By high-content screening (HCS) microscopy, we revealed that depolarization of cultured sensory neurons rapidly activates protein kinase A type II (PKA-II) in nociceptors by calcium influx through CaV1.2 channels. This effect was modulated by calpains but insensitive to inhibitors of cAMP formation, including opioids. In turn, PKA-II phosphorylated Ser1928 in the distal C terminus of CaV1.2, thereby increasing channel gating, whereas dephosphorylation of Ser1928 involved the phosphatase calcineurin. Patch-clamp and behavioral experiments confirmed that depolarization leads to calcium- and PKA-dependent sensitization of calcium currents ex vivo and local peripheral hyperalgesia in the skin in vivo. Our data suggest a local activity-driven feed-forward mechanism that selectively translates strong depolarization into further activity and thereby facilitates hypersensitivity of nociceptor terminals by a mechanism inaccessible to opioids.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo II Dependente de AMP Cíclico/metabolismo , Nociceptores/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
3.
FEBS J ; 288(7): 2418-2435, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33051988

RESUMO

Venoms are a rich source of highly specific toxins, which allow the identification of novel therapeutic targets. We have now applied high content screening (HCS) microscopy to identify toxins that modulate pain sensitization signaling in primary sensory neurons of rat and elucidated the underlying mechanism. A set of venoms and fractions thereof were analyzed for their ability to activate type II protein kinase A (PKA-II) and extracellular signal-regulated kinases (ERK1/2). We identified MeuNaTxα-1, a sodium channel-selective scorpion α-toxin from Mesobuthus eupeus, which affected both PKA-II and ERK1/2. Recombinant MeuNaTxα-1 showed identical activity to the native toxin on mammalian voltage-gated sodium channels expressed in Xenopus laevis oocytes and induced thermal hyperalgesia in adult mice. The effect of MeuNaTxα-1 on sensory neurons was dose-dependent and tetrodotoxin-sensitive. Application of inhibitors and toxin mutants with altered sodium channel selectivity demonstrated that signaling activation in sensory neurons depends on NaV 1.2 isoform. Accordingly, the toxin was more potent in neurons from newborn rats, where NaV 1.2 is expressed at a higher level. Our results demonstrate that HCS microscopy-based monitoring of intracellular signaling is a novel and powerful tool to identify and characterize venoms and their toxins affecting sensory neurons.


Assuntos
Proteína Quinase Tipo II Dependente de AMP Cíclico/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Dor/genética , Canais de Sódio Disparados por Voltagem/genética , Animais , Animais Recém-Nascidos , Humanos , Hiperalgesia/genética , Hiperalgesia/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Ratos , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Escorpiões/química , Células Receptoras Sensoriais , Xenopus laevis/crescimento & desenvolvimento
4.
Stem Cells ; 34(8): 2115-29, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27068685

RESUMO

Adult neural stem cells with the ability to generate neurons and glia cells are active throughout life in both the dentate gyrus (DG) and the subventricular zone (SVZ). Differentiation of adult neural stem cells is induced by cell fate determinants like the transcription factor Prox1. Evidence has been provided for a function of Prox1 as an inducer of neuronal differentiation within the DG. We now show that within the SVZ Prox1 induces differentiation into oligodendrocytes. Moreover, we find that loss of Prox1 expression in vivo reduces cell migration into the corpus callosum, where the few Prox1 deficient SVZ-derived remaining cells fail to differentiate into oligodendrocytes. Thus, our work uncovers a novel function of Prox1 as a fate determinant for oligodendrocytes in the adult mammalian brain. These data indicate that the neurogenic and oligodendrogliogenic lineages in the two adult neurogenic niches exhibit a distinct requirement for Prox1, being important for neurogenesis in the DG but being indispensable for oligodendrogliogenesis in the SVZ. Stem Cells 2016;34:2115-2129.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Proteínas de Homeodomínio/metabolismo , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Oligodendroglia/citologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Movimento Celular/genética , Células Cultivadas , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , Neurogênese/genética , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptores Notch/genética , Receptores Notch/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA