Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 210(Pt 24): 4279-85, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18055617

RESUMO

Blood gas analyses from emperor penguins (Aptenodytes forsteri) at rest, and intravascular P(O(2)) profiles from free-diving birds were obtained in order to examine hypoxemic tolerance and utilization of the blood O(2) store during dives. Analysis of blood samples from penguins at rest revealed arterial P(O(2))s and O(2) contents of 68+/-7 mmHg (1 mmHg= 133.3 Pa) and 22.5+/-1.3 ml O(2) dl(-1) (N=3) and venous values of 41+/-10 mmHg and 17.4+/-2.9 ml O(2) dl(-1) (N=9). Corresponding arterial and venous Hb saturations for a hemoglobin (Hb) concentration of 18 g dl(-1) were >91% and 70%, respectively. Analysis of P(O(2)) profiles obtained from birds equipped with intravascular P(O(2)) electrodes and backpack recorders during dives revealed that (1) the decline of the final blood P(O(2)) of a dive in relation to dive duration was variable, (2) final venous P(O(2)) values spanned a 40-mmHg range at the previously measured aerobic dive limit (ADL; dive duration associated with onset of post-dive blood lactate accumulation), (3) final arterial, venous and previously measured air sac P(O(2)) values were indistinguishable in longer dives, and (4) final venous P(O(2)) values of longer dives were as low as 1-6 mmHg during dives. Although blood O(2) is not depleted at the ADL, nearly complete depletion of the blood O(2) store occurs in longer dives. This extreme hypoxemic tolerance, which would be catastrophic in many birds and mammals, necessitates biochemical and molecular adaptations, including a shift in the O(2)-Hb dissociation curve of the emperor penguin in comparison to those of most birds. A relatively higher-affinity Hb is consistent with blood P(O(2)) values and O(2) contents of penguins at rest.


Assuntos
Mergulho/fisiologia , Hipóxia/sangue , Oxigênio/sangue , Spheniscidae/fisiologia , Animais , Vasos Sanguíneos/fisiologia , Pressão Parcial , Descanso , Fatores de Tempo
2.
Artigo em Inglês | MEDLINE | ID: mdl-12829055

RESUMO

Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1+/-0.2 degrees C (n=101 dives in five birds), pectoral muscle: 37.8+/-0.1 degrees C (n=71 dives in three birds) and axillary/brachial veins: 37.9+/-0.1 degrees C (n=97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r=-0.59, P<0.05; range <1 degrees C). In contrast, grand mean temperatures in the wing vein, foot vein and lumbar subcutaneous tissue during dives were 7.6+/-0.7 degrees C (n=157 dives in three birds), 20.2+/-1.2 degrees C (n=69 in three birds) and 35.2+/-0.2 degrees C (n=261 in six birds), respectively. Mean limb temperature during dives negatively correlated with diving duration in all six birds (r=-0.29 to -0.60, P<0.05). In two of six birds, mean diving subcutaneous temperature negatively correlated with diving duration (r=-0.49 and -0.78, P<0.05). Sub-feather temperatures decreased from 31 to 35 degrees C during rest periods to a grand mean of 15.0+/-0.7 degrees C during 68 dives of three birds; mean diving temperature and duration correlated negatively in one bird (r=-0.42, P<0.05). In general, pectoral, deep venous and even stomach temperatures during diving reflected previously measured vena caval temperatures of 37-39 degrees C more closely than the anterior abdominal temperatures (19-30 degrees C) recently recorded in diving emperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole. Such high temperatures within the body and the observed decreases in limb, anterior abdomen, subcutaneous and sub-feather temperatures are consistent with preservation of core temperature and cooling of an outer body shell secondary to peripheral vasoconstriction, decreased insulation of the feather layer, and conductive/convective heat loss to the water environment during the diving of these emperor penguins.


Assuntos
Aves/fisiologia , Regulação da Temperatura Corporal/fisiologia , Mergulho/fisiologia , Animais , Regiões Antárticas , Temperatura Corporal , Extremidades , Plumas , Gelo , Músculo Esquelético , Estômago , Tela Subcutânea , Veias
3.
J Exp Biol ; 205(Pt 24): 3769-74, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12432000

RESUMO

During diving, intermittent swim stroke patterns, ranging from burst/coast locomotion to prolonged gliding, represent potential energy conservation mechanisms that could extend the duration of aerobic metabolism and, hence, increase the aerobic dive limit (ADL, dive duration associated with onset of lactate accumulation). A 5.6 min ADL for emperor penguins had been previously determined with lactate measurements after dives of <50 m depth. In order to assess locomotory patterns during such dives, longitudinal acceleration was measured with an attached accelerometer in 44 dives of seven adult birds diving from an isolated dive hole in the sea ice of McMurdo Sound, Antarctica. Detection of wing strokes in processed accelerometer data was verified in selected birds with analysis of simultaneous Crittercam underwater video footage. Mean dive duration of birds equipped with the accelerometer and a time-depth recorder (TDR) was 5.7+/-2.2 min; 48% of these dives were greater than the measured 5.6 min ADL (ADL(M)). Highest stroke frequencies (0.92+/-0.31 Hz, N=981) occurred during the initial descent to 12 m depth. Swimming effort was reduced to a mean stroke frequency <0.70 Hz during other phases of the dive (while traveling below 12 m depth, during foraging ascents/descents to and from the sub-ice surface, and during final ascents to exit). The longest stroke interval (8.6 s) occurred during a feeding excursion to the undersurface of the ice. In dives >ADL(M), mean stroke frequency during travel segments was significantly less than that in dives 10 s) periods of prolonged gliding during these shallow (<60 m) foraging dives. However, a stroke/glide pattern was evident with more than 50% of strokes associated with a stroke interval >1.6 s, and with lower stroke frequency associated with increased dive duration.


Assuntos
Aves/fisiologia , Mergulho/fisiologia , Natação/fisiologia , Animais , Regiões Antárticas , Metabolismo Energético , Gelo , Água do Mar , Estatística como Assunto
4.
Artigo em Inglês | MEDLINE | ID: mdl-11440867

RESUMO

Inferior vena caval (IVC) and anterior abdominal (AA) temperatures were recorded in seven emperor penguins (Aptenodytes forsteri) foraging under sea ice in order to evaluate the hypothesis that hypothermia-induced metabolic suppression might extend aerobic diving time. Diving durations ranged from 1 to 12.5 min, with 39% of dives greater than the measured aerobic dive limit of 5.6 min. Anterior abdominal temperature decreased progressively throughout dives, and partially returned to pre-dive values during surface intervals. The lowest AA temperature was 19 degrees C. However, mean AA temperatures during dives did not correlate with diving durations. In six of seven penguins, only minor fluctuations in IVC temperatures occurred during diving. These changes were often elevations in temperature. In the one exception, although IVC temperatures decreased, the reductions were less than those in the anterior abdomen and did not correlate with diving durations. Because of these findings, we consider it unlikely that regional hypothermia in emperor penguins leads to a significant reduction in oxygen consumption of the major organs within the abdominal core. Rather, temperature profiles during dives are consistent with a model of regional heterothermy with conservation of core temperature, peripheral vasoconstriction, and cooling of an outer body shell.


Assuntos
Aves/fisiologia , Regulação da Temperatura Corporal , Comportamento Alimentar/fisiologia , Abdome , Animais , Metabolismo Basal/fisiologia , Temperatura Corporal , Gelo , Água do Mar , Veia Cava Inferior
5.
J Exp Biol ; 203(Pt 21): 3275-8, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11023847

RESUMO

Emperor penguins (Aptenodytes forsteri) were equipped with a remote underwater video camera, the Crittercam, to evaluate sub-ice foraging behavior while the birds dived from an isolated dive hole. Three birds dived and foraged successfully for 1 h periods after being trained to wear and to dive with a harness for camera attachment. Video and depth profile recordings revealed that emperor penguins travel at shallow depths (<50 m), ascend to the undersurface of the ice to feed on fish, and descend back to depth to return to the exit hole. Although the mean durations of dives of individual birds with the Crittercam were 21-35 % shorter than the diving durations of these same birds without the camera, the dive profiles in both situations were similar, thus demonstrating a similar foraging strategy in birds diving without the camera. Despite shorter diving durations with the camera, the penguins were still successful at prey capture in 80 % of 91 dives greater than 1 min in duration. Prey included the sub-ice fish Pagothenia borchgrevinki. Hunting ascents (from depth to within 5 m of the surface) occurred in 85 % of dives, ranged from zero to three per dive, and were associated with successful prey capture in 77 % of 128 ascents. Occasionally, several fish were captured during a single ascent. These observations and this application of video technology create a model for further physiological and behavioral studies of foraging, and also emphasize the potential importance of shallow dives as sources of food intake for emperor penguins during foraging trips to sea.


Assuntos
Aves/fisiologia , Mergulho/fisiologia , Comportamento Alimentar/fisiologia , Animais , Peixes , Modelos Biológicos , Comportamento Predatório/fisiologia , Gravação de Videoteipe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA