Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1372927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742105

RESUMO

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Assuntos
Antígenos de Helmintos , Células Dendríticas , Dinoprostona , Lectinas Tipo C , Manose , Polissacarídeos , Schistosoma mansoni , Células Th2 , Animais , Schistosoma mansoni/imunologia , Dinoprostona/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/imunologia , Manose/metabolismo , Manose/imunologia , Camundongos , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Antígenos de Helmintos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Óvulo/imunologia , Óvulo/metabolismo , Camundongos Endogâmicos C57BL , Ligante OX40/metabolismo
2.
Sci Rep ; 13(1): 20488, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993516

RESUMO

The development of effective recombinant vaccines against parasitic nematodes has been challenging and so far mostly unsuccessful. This has also been the case for Ostertagia ostertagi, an economically important abomasal nematode in cattle, applying recombinant versions of the protective native activation-associated secreted proteins (ASP). To gain insight in key elements required to trigger a protective immune response, the protein structure and N-glycosylation of the native ASP and a non-protective Pichia pastoris recombinant ASP were compared. Both antigens had a highly comparable protein structure, but different N-glycan composition. After mimicking the native ASP N-glycosylation via the expression in Nicotiana benthamiana plants, immunisation of calves with these plant-produced recombinants resulted in a significant reduction of 39% in parasite egg output, comparable to the protective efficacy of the native antigen. This study provides a valuable workflow for the development of recombinant vaccines against other parasitic nematodes.


Assuntos
Doenças dos Bovinos , Ostertagíase , Bovinos , Animais , Ostertagia/genética , Ostertagíase/prevenção & controle , Ostertagíase/veterinária , Vacinação/veterinária , Vacinas Sintéticas/genética , Proteínas Recombinantes/genética , Contagem de Ovos de Parasitas
3.
EBioMedicine ; 97: 104832, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837930

RESUMO

BACKGROUND: A controlled human infection model for schistosomiasis (CHI-S) can speed up vaccine development and provides insight into early immune responses following schistosome exposure. Recently, we established CHI-S model using single-sex male-only Schistosoma mansoni (Sm) cercariae in Schistosoma-naïve individuals. Given important differences in antigenic profile and human immune responses to schistosomes of different sex, we pioneered a single-sex female-only CHI-S model for future use in vaccine development. METHODS: We exposed 13 healthy, Schistosoma-naïve adult participants to 10 (n = 3) or 20 (n = 10) female cercariae and followed for 20 weeks, receiving treatment with praziquantel (PZQ) 60 mg/kg at week 8 and 12 after exposure. FINDINGS: The majority (11/13) participants reported rash and/or itch at the site of exposure, 5/13 had transient symptoms of acute schistosomiasis. Exposure to 20 cercariae led to detectable infection, defined as serum circulating anodic antigen levels >1.0 pg/mL, in 6/10 participants. Despite two rounds of PZQ treatment, 4/13 participants showed signs of persistent infection. Additional one- or three-day PZQ treatment (1 × 60 mg/kg and 3 × 60 mg/kg) or artemether did not result in cure, but over time three participants self-cured. Antibody, cellular, and cytokine responses peaked at week 4 post infection, with a mixed Th1, Th2, and regulatory profile. Cellular responses were (most) discriminative for symptoms. INTERPRETATION: Female-only infections exhibit similar clinical and immunological profiles as male-only infections but are more resistant to PZQ treatment. This limits future use of this model and may have important implications for disease control programs. FUNDING: European Union's Horizon 2020 (grant no. 81564).


Assuntos
Anti-Helmínticos , Esquistossomose mansoni , Adulto , Animais , Humanos , Masculino , Feminino , Esquistossomose mansoni/tratamento farmacológico , Voluntários Saudáveis , Schistosoma mansoni , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Citocinas , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
4.
PLoS Negl Trop Dis ; 17(6): e0011344, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37363916

RESUMO

During chronic schistosome infections, a complex regulatory network is induced to regulate the host immune system, in which IL-10-producing regulatory B (Breg) cells play a significant role. Schistosoma mansoni soluble egg antigens (SEA) are bound and internalized by B cells and induce both human and mouse IL-10 producing Breg cells. To identify Breg-inducing proteins in SEA, we fractionated SEA by size exclusion chromatography and found 6 fractions able to induce IL-10 production by B cells (out of 18) in the high, medium and low molecular weight (MW) range. The high MW fractions were rich in heavily glycosylated molecules, including multi-fucosylated proteins. Using SEA glycoproteins purified by affinity chromatography and synthetic glycans coupled to gold nanoparticles, we investigated the role of these glycan structures in inducing IL-10 production by B cells. Then, we performed proteomics analysis on active low MW fractions and identified a number of proteins with putative immunomodulatory properties, notably thioredoxin (SmTrx1) and the fatty acid binding protein Sm14. Subsequent splenic murine B cell stimulations and hock immunizations with recombinant SmTrx1 and Sm14 showed their ability to dose-dependently induce IL-10 production by B cells both in vitro and in vivo. Identification of unique Breg cells-inducing molecules may pave the way to innovative therapeutic strategies for inflammatory and auto-immune diseases.


Assuntos
Linfócitos B Reguladores , Nanopartículas Metálicas , Esquistossomose mansoni , Humanos , Animais , Camundongos , Schistosoma mansoni , Esquistossomose mansoni/prevenção & controle , Interleucina-10/genética , Ouro , Fatores Imunológicos , Tiorredoxinas/genética , Antígenos de Helmintos
5.
Front Mol Biosci ; 10: 1125438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006612

RESUMO

Schistosomes can survive in mammalian hosts for many years, and this is facilitated by released parasite products that modulate the host's immune system. Many of these products are glycosylated and interact with host cells via C-type lectin receptors (CLRs). We previously reported on specific fucose-containing glycans present on extracellular vesicles (EVs) released by schistosomula, the early juvenile life stage of the schistosome, and the interaction of these EVs with the C-type lectin receptor Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN or CD209). EVs are membrane vesicles with a size range between 30-1,000 nm that play a role in intercellular and interspecies communication. Here, we studied the glycosylation of EVs released by the adult schistosome worms. Mass spectrometric analysis showed that GalNAcß1-4GlcNAc (LacDiNAc or LDN) containing N-glycans were the dominant glycan type present on adult worm EVs. Using glycan-specific antibodies, we confirmed that EVs from adult worms were predominantly associated with LDN, while schistosomula EVs displayed a highly fucosylated glycan profile. In contrast to schistosomula EV that bind to DC-SIGN, adult worm EVs are recognized by macrophage galactose-type lectin (MGL or CD301), and not by DC-SIGN, on CLR expressing cell lines. The different glycosylation profiles of adult worm- and schistosomula-derived EVs match with the characteristic glycan profiles of the corresponding life stages and support their distinct roles in schistosome life-stage specific interactions with the host.

6.
Front Immunol ; 14: 1102344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949937

RESUMO

Parasitic nematodes responsible for filarial diseases cause chronic disablement in humans worldwide. Elimination programs have substantially reduced the rate of infection in certain areas, but limitations of current diagnostics for population surveillance have been pointed out and improved assays are needed to reach the elimination targets. While serological tests detecting antibodies to parasite antigens are convenient tools, those currently available are compromised by the occurrence of antibodies cross-reactive between nematodes, as well as by the presence of residual antibodies in sera years after treatment and clearance of the infection. We recently characterized the N-linked and glycosphingolipid derived glycans of the parasitic nematode Brugia malayi and revealed the presence of various antigenic structures that triggered immunoglobulin G (IgG) responses in infected individuals. To address the specificity of IgG binding to these glycan antigens, we screened microarrays containing Brugia malayi glycans with plasma from uninfected individuals and from individuals infected with Loa loa, Onchocerca volvulus, Mansonella perstans and Wuchereria bancrofti, four closely related filarial nematodes. IgG to a restricted subset of cross-reactive glycans was observed in infection plasmas from all four species. In plasma from Onchocerca volvulus and Mansonella perstans infected individuals, IgG binding to many more glycans was additionally detected, resulting in total IgG responses similar to the ones of Brugia malayi infected individuals. For these infection groups, Brugia malayi, Onchocerca volvulus and Mansonella perstans, we further studied the different IgG subclasses to Brugia malayi glycans. In all three infections, IgG1 and IgG2 appeared to be the major subclasses involved in response to glycan antigens. Interestingly, in Brugia malayi infected individuals, we observed a marked reduction in particular in IgG2 to parasite glycans post-treatment with anthelminthic, suggesting a promising potential for diagnostic applications. Thus, we compared the IgG response to a broad repertoire of Brugia malayi glycans in individuals infected with various filarial nematodes. We identified broadly cross-reactive and more specific glycan targets, extending the currently scarce knowledge of filarial nematode glycosylation and host anti-glycan antibody response. We believe that our initial findings could be further exploited to develop disease-specific diagnostics as part of an integrated approach for filarial disease control.


Assuntos
Brugia Malayi , Filariose , Humanos , Animais , Anticorpos Anti-Helmínticos , Antígenos , Imunoglobulina G
7.
Sci Rep ; 12(1): 15763, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131114

RESUMO

Serum N-glycan profiling studies during the past decades have shown robust associations between N-glycan changes and various biological conditions, including infections, in humans. Similar studies are scarcer for other mammals, despite the tremendous potential of serum N-glycans as biomarkers for infectious diseases in animal models of human disease and in the veterinary context. To expand the knowledge of serum N-glycan profiles in important mammalian model systems, in this study, we combined MALDI-TOF-MS analysis and HILIC-UPLC profiling of released N-glycans together with glycosidase treatments to characterize the glycan structures present in rhesus macaque serum. We used this baseline to monitor changes in serum N-glycans during infection with Brugia malayi, a parasitic nematode of humans responsible for lymphatic filariasis, in a longitudinal cohort of infected rhesus macaques. Alterations of the HILIC-UPLC profile, notably of abundant structures, became evident as early as 5 weeks post-infection. Given its prominent role in the immune response, contribution of immunoglobulin G to serum N-glycans was investigated. Finally, comparison with similar N-glycan profiling performed during infection with the dog heartworm Dirofilaria immitis suggests that many changes observed in rhesus macaque serum N-glycans are specific for lymphatic filariasis.


Assuntos
Brugia Malayi , Dirofilaria immitis , Filariose Linfática , Animais , Biomarcadores , Dirofilaria immitis/fisiologia , Cães , Filariose Linfática/parasitologia , Glicosídeo Hidrolases , Humanos , Imunoglobulina G , Macaca mulatta , Mamíferos , Polissacarídeos
8.
Micromachines (Basel) ; 13(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35630110

RESUMO

For many parasitic diseases, the microscopic examination of clinical samples such as urine and stool still serves as the diagnostic reference standard, primarily because microscopes are accessible and cost-effective. However, conventional microscopy is laborious, requires highly skilled personnel, and is highly subjective. Requirements for skilled operators, coupled with the cost and maintenance needs of the microscopes, which is hardly done in endemic countries, presents grossly limited access to the diagnosis of parasitic diseases in resource-limited settings. The urgent requirement for the management of tropical diseases such as schistosomiasis, which is now focused on elimination, has underscored the critical need for the creation of access to easy-to-use diagnosis for case detection, community mapping, and surveillance. In this paper, we present a low-cost automated digital microscope-the Schistoscope-which is capable of automatic focusing and scanning regions of interest in prepared microscope slides, and automatic detection of Schistosoma haematobium eggs in captured images. The device was developed using widely accessible distributed manufacturing methods and off-the-shelf components to enable local manufacturability and ease of maintenance. For proof of principle, we created a Schistosoma haematobium egg dataset of over 5000 images captured from spiked and clinical urine samples from field settings and demonstrated the automatic detection of Schistosoma haematobium eggs using a trained deep neural network model. The experiments and results presented in this paper collectively illustrate the robustness, stability, and optical performance of the device, making it suitable for use in the monitoring and evaluation of schistosomiasis control programs in endemic settings.

9.
Cell Rep ; 38(13): 110611, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354052

RESUMO

The HIV-1 Envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs). Env is heavily glycosylated with host-derived N-glycans, and many bnAbs bind to, or are dependent upon, Env glycans for neutralization. Although glycan-binding bnAbs are frequently detected in HIV-infected individuals, attempts to elicit them have been unsuccessful because of the poor immunogenicity of Env N-glycans. Here, we report cross-reactivity of glycan-binding bnAbs with self- and non-self N-glycans and glycoprotein antigens from different life-stages of Schistosoma mansoni. Using the IAVI Protocol C HIV infection cohort, we examine the relationship between S. mansoni seropositivity and development of bnAbs targeting glycan-dependent epitopes. We show that the unmutated common ancestor of the N332/V3-specific bnAb lineage PCDN76, isolated from an HIV-infected donor with S. mansoni seropositivity, binds to S. mansoni cercariae while lacking reactivity to gp120. Overall, these results present a strategy for elicitation of glycan-reactive bnAbs which could be exploited in HIV-1 vaccine development.


Assuntos
Infecções por HIV , HIV-1 , Parasitos , Animais , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Humanos , Parasitos/metabolismo , Polissacarídeos/metabolismo
10.
Mol Cell Proteomics ; 21(5): 100201, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065273

RESUMO

Millions of people worldwide are infected with filarial nematodes, responsible for lymphatic filariasis (LF) and other diseases causing chronic disablement. Elimination programs have resulted in a substantial reduction of the rate of infection in certain areas creating a need for improved diagnostic tools to establish robust population surveillance and avoid LF resurgence. Glycans from parasitic helminths are emerging as potential antigens for use in diagnostic assays. However, despite its crucial role in host-parasite interactions, filarial glycosylation is still largely, structurally, and functionally uncharacterized. Therefore, we investigated the glycan repertoire of the filarial nematode Brugia malayi. Glycosphingolipid and N-linked glycans were extracted from several life-stages using enzymatic release and characterized using a combination of MALDI-TOF-MS and glycan sequencing techniques. Next, glycans were purified by HPLC and printed onto microarrays to assess the host anti-glycan antibody response. Comprehensive glycomic analysis of B. malayi revealed the presence of several putative antigenic motifs such as phosphorylcholine and terminal glucuronic acid. Glycan microarray screening showed a recognition of most B. malayi glycans by immunoglobulins from rhesus macaques at different time points after infection, which permitted the characterization of the dynamics of anti-glycan immunoglobulin G and M during the establishment of brugian filariasis. A significant level of IgG binding to the parasite glycans was also detected in infected human plasma, while IgG binding to glycans decreased after anthelmintic treatment. Altogether, our work identifies B. malayi glycan antigens and reveals antibody responses from the host that could be exploited as potential markers for LF.


Assuntos
Brugia Malayi , Filariose Linfática , Animais , Filariose Linfática/diagnóstico , Filariose Linfática/parasitologia , Humanos , Imunoglobulina G , Macaca mulatta , Polissacarídeos
11.
Parasitology ; 149(3): 306-313, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34736550

RESUMO

Assays which enable the detection of schistosome gut-associated circulating anodic (CAA) and cathodic (CCA) antigen in serum or urine are increasingly used as a diagnostic tool for schistosome infection. However, little is known about the production and clearance of these circulating antigens in relation to the sex and reproductive maturity of the parasite. Here we describe CAA and CCA excretion patterns by exploring a mouse model after exposure to 36 male-only, female-only and mixed (male/female) Schistosoma mansoni cercariae. We found that serum and urine CAA levels, analysed at 3 weeks intervals, peaked at 6 weeks post-infection. Worms recovered after perfusion at 14 weeks were cultured ex vivo. Male parasites excreted more circulating antigens than females, in the mouse model as well as ex vivo. In mixed infections (supporting egg production), serum CAA levels correlated to the number of recovered worms, whereas faecal egg counts or Schistosoma DNA in stool did not. No viable eggs and no inflammation were seen in the livers from mice infected with female worms only. Ex vivo, CAA levels were higher than CCA levels. Our study confirms that CAA levels reflect worm burden and allows detection of low-level single-sex infections.


Assuntos
Parasitos , Esquistossomose mansoni , Animais , Anticorpos Anti-Helmínticos , Antígenos de Helmintos , Feminino , Masculino , Contagem de Ovos de Parasitas , Schistosoma mansoni , Esquistossomose mansoni/diagnóstico
12.
ACS Chem Biol ; 16(9): 1671-1679, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34469105

RESUMO

Vaccination represents the most effective way to prevent invasive pneumococcal diseases. The glycoconjugate vaccines licensed so far are obtained from capsular polysaccharides (CPSs) of the most virulent serotypes. Protection is largely limited to the specific vaccine serotypes, and the continuous need for broader coverage to control the outbreak of emerging serotypes is pushing the development of new vaccine candidates. Indeed, the development of efficacious vaccine formulation is complicated by the high number of bacterial serotypes with different CPSs. In this context, to simplify vaccine composition, we propose the design of new saccharide fragments containing chemical structures shared by different serotypes as cross-reactive and potentially cross-protective common antigens. In particular, we focused on Streptococcus pneumoniae (Sp) 19A and 19F. The CPS repeating units of Sp 19F and 19A are very similar and share a common structure, the disaccharide ManNAc-ß-(1→4)-Glc (A-B). Herein, we describe the synthesis of a small library of compounds containing different combinations of the common 19F/19A disaccharide. The six new compounds were tested with a glycan array to evaluate their recognition by antibodies in reference group 19 antisera and factor reference antisera (reacting against 19F or 19A). The disaccharide A-B, phosphorylated at the upstream end, emerged as a hit from the glycan array screening because it is strongly recognized by the group 19 antisera and by the 19F and 19A factor antisera, with similar intensity compared with the CPSs used as controls. Our data give a strong indication that the phosphorylated disaccharide A-B can be considered a common epitope among different Sp 19 serotypes.


Assuntos
Epitopos/química , Glicoconjugados/análise , Proteínas Imobilizadas/química , Polissacarídeos Bacterianos/análise , Anticorpos/química , Técnicas Biossensoriais , Reações Cruzadas , Glicoconjugados/metabolismo , Hexosaminas/química , Polissacarídeos Bacterianos/metabolismo , Sorogrupo , Soro/química , Espectrometria de Fluorescência , Streptococcus pneumoniae/metabolismo , Propriedades de Superfície
13.
RSC Chem Biol ; 2(1): 187-191, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458781

RESUMO

Lipoteichoic acids (LTAs) have been addressed as possible antigen candidates for vaccine development against several opportunistic Gram-positive pathogens. The study of structure-immunogenicity relationship represents a challenge due to the heterogenicity of LTA extracted from native sources. LTAs are built up from glycerol phosphate (GroP) repeating units and they can be substituted at the C-2-OH with carbohydrate appendages or d-alanine residues. The substitution pattern, but also the absolute chirality of the GroP residues can impact the interaction with chiral biomolecules including antibodies and biosynthesis enzymes. We have generated a set of diastereomeric GroP hexamers bearing a glucosyl modification at one of the residues. The chirality of the glycerol building block had an important impact on the stereoselectivity of the glycosylation reaction between the glycosyl donor and the glycerol C-2-OH acceptor. The GroP C-2-chirality also played an important role in the interaction with TA recognizing antibodies. These findings have important implications for the design and synthesis of synthetic TA fragments for diagnostic and therapeutic applications.

14.
ACS Chem Biol ; 16(8): 1344-1349, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34255482

RESUMO

Glycerol phosphate (GroP)-based teichoic acids (TAs) are antigenic cell-wall components found in both enterococcus and staphylococcus species. Their immunogenicity has been explored using both native and synthetic structures, but no details have yet been reported on the structural basis of their interaction with antibodies. This work represents the first case study in which a monoclonal antibody, generated against a synthetic TA, was developed and employed for molecular-level binding analysis using TA microarrays, ELISA, SPR-analyses, and STD-NMR spectroscopy. Our findings show that the number and the chirality of the GroP residues are crucial for interaction and that the sugar appendage contributes to the presentation of the backbone to the binding site of the antibody.


Assuntos
Anticorpos Monoclonais Murinos/metabolismo , Epitopos/metabolismo , Glicerofosfatos/metabolismo , Ácidos Teicoicos/metabolismo , Animais , Anticorpos Monoclonais Murinos/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Epitopos/imunologia , Glicerofosfatos/química , Glicerofosfatos/imunologia , Camundongos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Ácidos Teicoicos/química , Ácidos Teicoicos/imunologia
15.
J Biomed Opt ; 26(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33423408

RESUMO

SIGNIFICANCE: Particle field holography is a versatile technique to determine the size and distribution of moving or stationary particles in air or in a liquid without significant disturbance of the sample volume. Although this technique is applied in biological sample analysis, it is limited to small sample volumes, thus increasing the number of measurements per sample. In this work, we characterize the maximum achievable volume limit based on the specification of a given sensor to realize the development of a potentially low-cost, single-shot, large-volume holographic microscope. AIM: We present mathematical formulas that will aid in the design and development and improve the focusing speed for the numerical reconstruction of registered holograms in particle field holographic microscopes. Our proposed methodology has potential application in the detection of Schistosoma haematobium eggs in human urine samples. APPROACH: Using the Fraunhofer holography theory for opaque objects, we derived an exact formula for the maximum diffraction-limited volume for an in-line holographic setup. The proof-of-concept device built based on the derived formulas was experimentally validated with urine spiked with cultured Schistosoma haematobium eggs. RESULTS: Results obtained show that for urine spiked with Schistosoma haematobium eggs, the volume thickness is limited to several millimeters due to scattering properties of the sample. The distances of the target particles could be estimated directly from the hologram fringes. CONCLUSION: The methodology proposed will aid in the development of large-volume holographic microscopes.


Assuntos
Holografia , Testes Diagnósticos de Rotina , Humanos , Microscopia
16.
Allergy ; 76(1): 233-246, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568414

RESUMO

BACKGROUND: In high-income, temperate countries, IgE to allergen extracts is a risk factor for, and mediator of, allergy-related diseases (ARDs). In the tropics, positive IgE tests are also prevalent, but rarely associated with ARD. Instead, IgE responses to ubiquitous cross-reactive carbohydrate determinants (CCDs) on plant, insect and parasite glycoproteins, rather than to established major allergens, are dominant. Because anti-CCD IgE has limited clinical relevance, it may impact ARD phenotyping and assessment of contribution of atopy to ARD. METHODS: Using an allergen extract-based test, a glycan and an allergen (glyco)protein microarray, we mapped IgE fine specificity among Ugandan rural Schistosoma mansoni (Sm)-endemic communities, proximate urban communities, and importantly in asthmatic and nonasthmatic schoolchildren. RESULTS: Overall, IgE sensitization to extracts was highly prevalent (43%-73%) but allergen arrays indicated that this was not attributable to established major allergenic components of the extracts (0%-36%); instead, over 40% of all participants recognized CCD-bearing components. Using glycan arrays, we dissected IgE responses to specific glycan moieties and found that reactivity to classical CCD epitopes (core ß-1,2-xylose, α-1,3-fucose) was positively associated with sensitization to extracts, rural environment and Sm infection, but not with skin reactivity to extracts or sensitization to their major allergenic components. Interestingly, we discovered that reactivity to only a subset of core α-1,3-fucose-carrying N-glycans was inversely associated with asthma. CONCLUSIONS: CCD reactivity is not just an epiphenomenon of parasite exposure hampering specificity of allergy diagnostics; mechanistic studies should investigate whether specific CCD moieties identified here are implicated in the protective effect of certain environmental exposures against asthma.


Assuntos
Asma , Fucose , Alérgenos , Asma/diagnóstico , Asma/epidemiologia , Asma/etiologia , Carboidratos , Criança , Reações Cruzadas , Epitopos , Humanos , Imunoglobulina E
17.
Nat Med ; 26(3): 326-332, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066978

RESUMO

Schistosomiasis treatment relies on the use of a single drug, praziquantel, which is insufficient to control transmission in highly endemic areas1. Novel medicines and vaccines are urgently needed2,3. An experimental human model for schistosomiasis could accelerate the development of these products. We performed a dose-escalating clinical safety trial in 17 volunteers with male Schistosoma mansoni cercariae, which do not produce eggs (clinicaltrials.gov NCT02755324), at the Leiden University Medical Center, the Netherlands. The primary endpoints were adverse events and infectivity. We found a dose-related increase in adverse events related to acute schistosomiasis syndrome, which occurred in 9 of 17 volunteers. Overall, 5 volunteers (all 3 of the high dose group and 2 of 11 of the medium dose group) reported severe adverse events. Worm-derived circulating anodic antigen, the biomarker of the primary infection endpoint, peaked in 82% of volunteers at 3-10 weeks following exposure. All volunteers showed IgM and IgG1 seroconversion and worm-specific cytokine production by CD4+ T cells. All volunteers were cured with praziquantel provided at 12 weeks after exposure. Infection with 20 Schistosoma mansoni cercariae led to severe adverse events in 18% of volunteers and high infection rates. This infection model paves the way for fast-track product development for treatment and prevention of schistosomiasis.


Assuntos
Antiparasitários/uso terapêutico , Modelos Biológicos , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/imunologia , Vacinas/imunologia , Adolescente , Adulto , Animais , Antígenos de Helmintos/sangue , Antígenos de Helmintos/imunologia , Antiparasitários/farmacologia , Citocinas/sangue , Feminino , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/sangue , Esquistossomose mansoni/microbiologia , Adulto Jovem
18.
Parasitol Int ; 75: 102050, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31901435

RESUMO

The carcinogenic liver fluke Opisthorchis viverrini (O. viverrini) is endemic in Thailand and neighboring countries including Laos PDR, Vietnam and Cambodia. Infections with O. viverrini lead to hepatobiliary abnormalities including bile duct cancer-cholangiocarcinoma (CCA). Despite decades of extensive studies, the underlying mechanisms of how this parasite survives in the bile duct and causes disease are still unclear. Therefore, this study aims to identify and characterize the most abundant protein secreted by the parasite. Proteomics and bioinformatics analysis revealed that the most abundant secretory protein is a metallopeptidase, named Ov-M60-like-1. This protein contains an N-terminal carbohydrate-binding domain and a C-terminal M60-like domain with a zinc metallopeptidase HEXXH motif. Further analysis by mass spectrometry revealed that Ov-M60-like-1 is N-glycosylated. Recombinant Ov-M60-like-1 (rOv-M60-like-1) expressed in Escherichia coli (E. coli) was able to digest bovine submaxillary mucin (BSM). The mucinase activity was inhibited by the ion chelating agent EDTA, confirming its metallopeptidase identity. The enzyme was active at temperatures ranging 25-37 °C in a broad pH range (pH 2-10). The identification of Ov-M60-like-1 mucinase as the major secretory protein of O. viverrini worms warrants further research into the role of this glycoprotein in the pathology induced by this carcinogenic worm.


Assuntos
Proteínas de Helminto/genética , Metaloproteases/genética , Opisthorchis/genética , Sequência de Aminoácidos , Animais , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Metaloproteases/química , Metaloproteases/metabolismo , Opistorquíase/metabolismo , Opisthorchis/enzimologia , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
19.
Sci Rep ; 9(1): 3522, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837526

RESUMO

Core ß-1,2-xylose and α-1,3-fucose are antigenic motifs on schistosome N-glycans, as well as prominent IgE targets on some plant and insect glycoproteins. To map the association of schistosome infection with responses to these motifs, we assessed plasma IgE and IgG reactivity using microarray technology among Ugandans from rural Schistosoma mansoni (Sm)-endemic islands (n = 209), and from proximate urban communities with lower Sm exposure (n = 62). IgE and IgG responses to core ß-1,2-xylose and α-1,3-fucose modified N-glycans were higher in rural versus urban participants. Among rural participants, IgE and IgG to core ß-1,2-xylose were positively associated with Sm infection and concentration peaks coincided with the infection intensity peak in early adolescence. Responses to core α-1,3-fucose were elevated regardless of Sm infection status and peaked before the infection peak. Among urban participants, Sm infection intensity was predominantly light and positively associated with responses to both motifs. Principal component and hierarchical cluster analysis reduced the data to a set of variables that captured core ß-1,2-xylose- and α-1,3-fucose-specific responses, and confirmed associations with Sm and the rural environment. Responses to core ß-1,2-xylose and α-1,3-fucose have distinctive relationships with Sm infection and intensity that should further be explored for associations with protective immunity, and cross-reactivity with other exposures.


Assuntos
Imunoglobulina E/sangue , Imunoglobulina G/sangue , Polissacarídeos/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/patologia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Glicosilação , Humanos , Masculino , Análise em Microsséries , Análise de Componente Principal , População Rural , Schistosoma mansoni/isolamento & purificação , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/parasitologia , Uganda , População Urbana , Adulto Jovem
20.
J Infect Dis ; 219(10): 1671-1680, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30561696

RESUMO

Baboons vaccinated with radiation-attenuated cercariae develop high levels of protection against schistosome infection, correlating to high antibody titres towards schistosome antigens with unknown molecular identity. Using a microarray consisting of glycans isolated from different life-stages of schistosomes, we studied the anti-glycan immunoglobulin (Ig) G and IgM responses in vaccinated and challenged baboons over a time course of 25 weeks. Anti-glycan IgM responses developed early after vaccination, but did not rise in response to later vaccinations. In contrast, anti-glycan IgG developed more slowly, but was boosted by all five subsequent vaccinations. High IgM and IgG levels against O-glycans and glycosphingolipid glycans of cercariae were observed. At the time of challenge, while most antibody levels decreased in the absence of vaccination, IgG towards a subset of glycans containing multiple-fucosylated motifs remained high until 6 weeks post-challenge during challenge parasite elimination, suggesting a possible role of this IgG in protection.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Papio anubis/imunologia , Papio anubis/parasitologia , Schistosoma mansoni/efeitos da radiação , Esquistossomose mansoni/veterinária , Animais , Antígenos de Helmintos/imunologia , Cercárias/imunologia , Cercárias/efeitos da radiação , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Análise em Microsséries/métodos , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/prevenção & controle , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA