Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(6): e1011469, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384759

RESUMO

The VRC01 Antibody Mediated Prevention (AMP) efficacy trials conducted between 2016 and 2020 showed for the first time that passively administered broadly neutralizing antibodies (bnAbs) could prevent HIV-1 acquisition against bnAb-sensitive viruses. HIV-1 viruses isolated from AMP participants who acquired infection during the study in the sub-Saharan African (HVTN 703/HPTN 081) and the Americas/European (HVTN 704/HPTN 085) trials represent a panel of currently circulating strains of HIV-1 and offer a unique opportunity to investigate the sensitivity of the virus to broadly neutralizing antibodies (bnAbs) being considered for clinical development. Pseudoviruses were constructed using envelope sequences from 218 individuals. The majority of viruses identified were clade B and C; with clades A, D, F and G and recombinants AC and BF detected at lower frequencies. We tested eight bnAbs in clinical development (VRC01, VRC07-523LS, 3BNC117, CAP256.25, PGDM1400, PGT121, 10-1074 and 10E8v4) for neutralization against all AMP placebo viruses (n = 76). Compared to older clade C viruses (1998-2010), the HVTN703/HPTN081 clade C viruses showed increased resistance to VRC07-523LS and CAP256.25. At a concentration of 1µg/ml (IC80), predictive modeling identified the triple combination of V3/V2-glycan/CD4bs-targeting bnAbs (10-1074/PGDM1400/VRC07-523LS) as the best against clade C viruses and a combination of MPER/V3/CD4bs-targeting bnAbs (10E8v4/10-1074/VRC07-523LS) as the best against clade B viruses, due to low coverage of V2-glycan directed bnAbs against clade B viruses. Overall, the AMP placebo viruses represent a valuable resource for defining the sensitivity of contemporaneous circulating viral strains to bnAbs and highlight the need to update reference panels regularly. Our data also suggests that combining bnAbs in passive immunization trials would improve coverage of global viruses.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Polissacarídeos
2.
J Virol ; 96(4): e0193421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935437

RESUMO

Broadly neutralizing antibodies (bNAbs) are able to prevent HIV infection following passive administration. Single-chain variable fragments (scFv) may have advantages over IgG as their smaller size permits improved diffusion into mucosal tissues. We have previously shown that scFv of bNAbs retain significant breadth and potency against cell-free viral transmission in a TZM-bl assay. However, scFv have not been tested for their ability to block cell-cell transmission, a model in which full-sized bNAbs lose potency. We tested four scFv (CAP256.25, PGT121, 3BNC117, and 10E8v4) compared to IgG, in free-virus and cell-cell neutralization assays in A3.01 cells, against a panel of seven heterologous viruses. We show that free-virus neutralization titers in the TZM-bl and A3.01 assays were not significantly different and confirm that scFv show a 1- to 32-fold reduction in activity in the cell-free model, compared to IgG. However, whereas IgG shows 3.4- to 19-fold geometric mean potency loss in cell-cell neutralization compared to free-virus transmission, scFv had more comparable activity in the two assays, with only a 1.3- to 2.3-fold reduction. Geometric mean 50% inhibitory concentration (IC50) of scFv for cell-cell transmission ranged from 0.65 µg/mL (10E8v4) to 2.3 µg/mL (3BNC117), with IgG and scFv neutralization showing similar potency against cell-associated transmission. Therefore, despite the reduced activity of scFv in cell-free assays, their retention of activity in the cell-cell format may make scFv useful for the prevention of both modes of transmission in HIV prevention studies. IMPORTANCE Broadly neutralizing antibodies (bNAbs) are a major focus for passive immunization against HIV, with the recently concluded HVTN Antibody Mediated Protection trial providing proof of concept. Most studies focus on cell-free HIV; however, cell-associated virus may play a significant role in HIV infection, pathogenesis, and latency. Single-chain variable fragments (scFv) of antibodies may have increased tissue penetration and reduced immunogenicity. We previously demonstrated that scFv of four HIV-directed bNAbs (CAP256.25, PGT121, 3BNC117, and 10E8v4) retain significant potency and breadth against cell-free HIV. As some bNAbs have been shown to lose potency against cell-associated virus, we investigated the ability of bNAb scFv to neutralize this mode of transmission. We demonstrate that unlike IgG, scFv of bNAbs are able to neutralize cell-free and cell-associated virus with similar potency. These scFv, which show functional activity in the therapeutic range, may therefore be suitable for further development as passive immunity for HIV prevention.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Imunização Passiva/métodos , Anticorpos de Cadeia Única/imunologia , Linhagem Celular , Humanos , Imunoglobulina G/imunologia , Concentração Inibidora 50 , Testes de Neutralização
3.
Front Immunol ; 12: 734110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603312

RESUMO

Broadly neutralizing antibodies (bNAbs) are currently being assessed in clinical trials for their ability to prevent HIV infection. Single chain variable fragments (scFv) of bNAbs have advantages over full antibodies as their smaller size permits improved diffusion into mucosal tissues and facilitates vector-driven gene expression. We have previously shown that scFv of bNAbs individually retain significant breadth and potency. Here we tested combinations of five scFv derived from bNAbs CAP256-VRC26.25 (V2-apex), PGT121 (N332-supersite), 3BNC117 (CD4bs), 8ANC195 (gp120-gp41 interface) and 10E8v4 (MPER). Either two or three scFv were combined in equimolar amounts and tested in the TZM-bl neutralization assay against a multiclade panel of 17 viruses. Experimental IC50 and IC80 data were compared to predicted neutralization titers based on single scFv titers using the Loewe additive and the Bliss-Hill model. Like full-sized antibodies, combinations of scFv showed significantly improved potency and breadth compared to single scFv. Combinations of two or three scFv generally followed an independent action model for breadth and potency with no significant synergy or antagonism observed overall although some exceptions were noted. The Loewe model underestimated potency for some dual and triple combinations while the Bliss-Hill model was better at predicting IC80 titers of triple combinations. Given this, we used the Bliss-Hill model to predict the coverage of scFv against a 45-virus panel at concentrations that correlated with protection in the AMP trials. Using IC80 titers and concentrations of 1µg/mL, there was 93% coverage for one dual scFv combination (3BNC117+10E8v4), and 96% coverage for two of the triple combinations (CAP256.25+3BNC117+10E8v4 and PGT121+3BNC117+10E8v4). Combinations of scFv, therefore, show significantly improved breadth and potency over individual scFv and given their size advantage, have potential for use in passive immunization.


Assuntos
Anticorpos Amplamente Neutralizantes/genética , Anticorpos Anti-HIV/genética , Proteína gp160 do Envelope de HIV/genética , Infecções por HIV/imunologia , HIV-1/fisiologia , Anticorpos de Cadeia Única/genética , Anticorpos Amplamente Neutralizantes/metabolismo , Engenharia Genética , Células HEK293 , Anticorpos Anti-HIV/metabolismo , Humanos , Imunização Passiva , Testes de Neutralização
4.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31619559

RESUMO

Passive administration of HIV-directed broadly neutralizing antibodies (bNAbs) can prevent infection in animal models, and human efficacy trials are under way. Single-chain variable fragments (scFv), comprised of only the variable regions of antibody heavy and light chains, are smaller molecules that may offer advantages over full-length IgG. We designed and expressed scFv of HIV bNAbs prioritized for clinical testing that target the V2-apex (CAP256-VRC26.25), V3-glycan supersite (PGT121), CD4 binding site (3BNC117), and MPER (10E8v4). The use of either a 15- or 18-amino-acid glycine-serine linker between the heavy- and light-chain fragments provided adequate levels of scFv expression. When tested against a 45-multisubtype virus panel, all four scFv retained good neutralizing activity, although there was variable loss of function compared to the parental IgG antibodies. For CAP256-VRC26.25, there was a significant 138-fold loss of potency that was in part related to differential interaction with charged amino acids at positions 169 and 170 in the V2 epitope. Potency was reduced for the 3BNC117 (13-fold) and PGT121 (4-fold) scFv among viruses lacking the N276 and N332 glycans, respectively, and in viruses with a longer V1 loop for PGT121. This suggested that scFv interacted with their epitopes in subtly different ways, with variation at key residues affecting scFv neutralization more than the matched IgGs. Remarkably, the scFv of 10E8v4 maintained breadth of 100% with only a minor reduction in potency. Overall, scFv of clinically relevant bNAbs had significant neutralizing activity, indicating that they are suitable for passive immunization to prevent HIV-1 infection.IMPORTANCE Monoclonal antibodies have been isolated against conserved epitopes on the HIV trimer and are being investigated for passive immunization. Some of the challenges associated with full-sized antibody proteins may be overcome by using single-chain variable fragments (scFv). These smaller forms of antibodies can be produced more efficiently, may show fewer off-target effects with increased tissue penetration, and are more adaptable to vectored-mediated expression than IgG. Here, we demonstrate that scFv of four HIV-directed bNAbs (CAP256-VRC26.25, PGT121, 3BNC117, and 10E8v4) had significant neutralizing activity against diverse global strains of HIV. Loss of potency and/or breadth was shown to be due to increased dependence of the scFv on key residues within the epitope. These smaller antibody molecules with functional activity in the therapeutic range may be suitable for further development as passive immunity for HIV prevention.


Assuntos
Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos , Anticorpos Anti-HIV/imunologia , Proteína gp160 do Envelope de HIV/imunologia , HIV-1/imunologia , Anticorpos de Cadeia Única/imunologia , Humanos
5.
Sci Rep ; 9(1): 11928, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417131

RESUMO

Human embryonal carcinoma (EC) cells comprise the pluripotent stem cells of malignant non-seminomatous germ cell tumors (GCTs) and represent the malignant counterpart of embryonic stem cells (ESCs). WNT/ß-catenin signaling has been implicated in regulating adult and embryonic stem cells although its role in EC cells is less investigated. Here, we studied WNT signaling in a panel of representative pluripotent and nullipotent human EC cell lines. We found that EC cell lines show distinct levels of intrinsic WNT signaling and respond differently to ectopic WNT activation. Short-term activation of WNT signaling induced a differentiation-response in the pluripotent EC cells (NT2 and NCCIT) whereas the nullipotent EC cells (TERA1 and 2102Ep) were refractory and maintained high levels of OCT4 and SSEA4 expression. Long-term activation of WNT signaling in NCCIT and, to a lesser extent, TERA1 cells led to (re)gain of OCT4 expression and a switch from SSEA4 to SSEA1 surface antigens ultimately resulting in OCT4+/SSEA4-/SSEA1+ profile. Cisplatin treatment indicated that the OCT4+/SSEA4-/SSEA1+ NCCIT cells became more resistant to chemotherapy treatment. Our findings are of particular interest for the GCT and ES cell biology and shed light on the role of WNT signaling in human EC cells.


Assuntos
Técnicas de Cultura de Células , Células-Tronco de Carcinoma Embrionário/metabolismo , Células-Tronco de Carcinoma Embrionário/patologia , Via de Sinalização Wnt , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Antígenos Embrionários Estágio-Específicos/metabolismo , Fatores de Tempo , Via de Sinalização Wnt/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA