Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835444

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disease, commonly caused by pathogenic MYBPC3 variants, and a significant cause of sudden cardiac death. Severity is highly variable, with incomplete penetrance among genotype-positive family members. Previous studies demonstrated metabolic changes in HCM. We aimed to identify metabolite profiles associated with disease severity in carriers of MYBPC3 founder variants using direct-infusion high-resolution mass spectrometry in plasma of 30 carriers with a severe phenotype (maximum wall thickness ≥20 mm, septal reduction therapy, congestive heart failure, left ventricular ejection fraction <50%, or malignant ventricular arrhythmia) and 30 age- and sex-matched carriers with no or a mild phenotype. Of the top 25 mass spectrometry peaks selected by sparse partial least squares discriminant analysis, XGBoost gradient boosted trees, and Lasso logistic regression (42 total), 36 associated with severe HCM at a p < 0.05, 20 at p < 0.01, and 3 at p < 0.001. These peaks could be clustered to several metabolic pathways, including acylcarnitine, histidine, lysine, purine and steroid hormone metabolism, and proteolysis. In conclusion, this exploratory case-control study identified metabolites associated with severe phenotypes in MYBPC3 founder variant carriers. Future studies should assess whether these biomarkers contribute to HCM pathogenesis and evaluate their contribution to risk stratification.


Assuntos
Cardiomiopatia Hipertrófica , Efeito Fundador , Miosinas , Humanos , Biomarcadores , Cardiomiopatia Hipertrófica/genética , Estudos de Casos e Controles , Proteínas do Citoesqueleto/genética , Mutação , Fenótipo , Volume Sistólico , Função Ventricular Esquerda , Miosinas/genética , Heterozigoto , Masculino
2.
Cells ; 10(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34831173

RESUMO

Hypertrophic Cardiomyopathy (HCM) is a common inherited heart disease with poor risk prediction due to incomplete penetrance and a lack of clear genotype-phenotype correlations. Advanced imaging techniques have shown altered myocardial energetics already in preclinical gene variant carriers. To determine whether disturbed myocardial energetics with the potential to serve as biomarkers are also reflected in the serum metabolome, we analyzed the serum metabolome of asymptomatic carriers in comparison to healthy controls and obstructive HCM patients (HOCM). We performed non-quantitative direct-infusion high-resolution mass spectrometry-based untargeted metabolomics on serum from fasted asymptomatic gene variant carriers, symptomatic HOCM patients and healthy controls (n = 31, 14 and 9, respectively). Biomarker panels that discriminated the groups were identified by performing multivariate modeling with gradient-boosting classifiers. For all three group-wise comparisons we identified a panel of 30 serum metabolites that best discriminated the groups. These metabolite panels performed equally well as advanced cardiac imaging modalities in distinguishing the groups. Seven metabolites were found to be predictive in two different comparisons and may play an important role in defining the disease stage. This study reveals unique metabolic signatures in serum of preclinical carriers and HOCM patients that may potentially be used for HCM risk stratification and precision therapeutics.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Metabolômica , Adulto , Metabolismo Energético , Feminino , Humanos , Masculino , Metaboloma , Pessoa de Meia-Idade , Análise Multivariada , Mutação/genética , Sarcômeros/genética
3.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808189

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is a rapidly growing global health problem with an estimated 12.6 million cases globally in 2017 and a 112% increase of deaths since 1990 due to aging and population growth. CAVD may develop into aortic stenosis (AS) by progressive narrowing of the aortic valve. AS is underdiagnosed, and if treatment by aortic valve replacement (AVR) is delayed, this leads to poor recovery of cardiac function, absence of symptomatic improvement and marked increase of mortality. Considering the current limitations to define the stage of AS-induced cardiac remodeling, there is need for a novel method to aid in the diagnosis of AS and timing of intervention, which may be found in metabolomics profiling of patients. METHODS: Serum samples of nine healthy controls and 10 AS patients before and after AVR were analyzed by untargeted mass spectrometry. Multivariate modeling was performed to determine a metabolic profile of 30 serum metabolites which distinguishes AS patients from controls. Human cardiac microvascular endothelial cells (CMECs) were incubated with serum of the AS patients and then stained for ICAM-1 with Western Blot to analyze the effect of AS patient serum on endothelial cell activation. RESULTS: The top 30 metabolic profile strongly distinguishes AS patients from healthy controls and includes 17 metabolites related to nitric oxide metabolism and 12 metabolites related to inflammation, in line with the known pathomechanism for calcific aortic valve disease. Nine metabolites correlate strongly with left ventricular mass, of which three show reversal back to control values after AVR. Western blot analysis of CMECs incubated with AS patient sera shows a significant reduction (14%) in ICAM-1 in AS samples taken after AVR compared to AS patient sera before AVR. CONCLUSION: Our study defined a top 30 metabolic profile with biological and clinical relevance, which may be used as blood biomarker to identify AS patients in need of cardiac surgery. Future studies are warranted in patients with mild-to-moderate AS to determine if these metabolites reflect disease severity and can be used to identify AS patients in need of cardiac surgery.


Assuntos
Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/cirurgia , Sangue/metabolismo , Óxido Nítrico/sangue , Idoso , Estenose da Valva Aórtica/diagnóstico por imagem , Biomarcadores/sangue , Estudos de Casos e Controles , Eicosanoides/sangue , Células Endoteliais , Ácidos Graxos/sangue , Feminino , Implante de Prótese de Valva Cardíaca , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Tomografia por Emissão de Pósitrons , Transcriptoma
5.
Curr Opin Cardiol ; 34(3): 254-259, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30747730

RESUMO

PURPOSE OF REVIEW: Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy, diagnosed by left ventricular hypertrophy of at least 15 mm maximal wall thickness (MWT). Recent studies reported a sex difference in clinical presentation, progression and outcome of HCM. This review provides an overview of recent studies into sex differences in HCM. RECENT FINDINGS: A higher number of men (55-65% of total HCM patient group) with manifest HCM has been observed, whereas female patients are older at first evaluation and diagnosis, present more frequently with symptoms, and have worse survival. Additionally, women have relatively smaller hearts even when corrected for body surface area (BSA), but female HCM patients have a higher interventricular septum thickness after correction for BSA. SUMMARY: Female HCM patients are possibly in a more advanced stage of disease at time of diagnosis because they require relatively more hypertrophy to reach the diagnostic threshold of at least 15 mm MWT. Additional studies are warranted to explore sex-specific diagnostic criteria for HCM.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Caracteres Sexuais , Progressão da Doença , Feminino , Humanos , Hipertrofia Ventricular Esquerda , Masculino
6.
Ned Tijdschr Geneeskd ; 1632019 02 07.
Artigo em Holandês | MEDLINE | ID: mdl-30730688

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. Its prevalence is estimated between 1:500 and 1:200. HCM is defined by left ventricular hypertrophy (wall thickness ≥ 15 mm) in absence of abnormal loading conditions such as hypertension. It is caused by mutations in cardiac sarcomere protein genes and inheritance is autosomal dominant. HCM is heterogeneous in terms of its clinical presentation, progression and prognosis, ranging from absence of symptoms in genotype-positive individuals to severe left ventricular hypertrophy, sudden cardiac death and end-stage heart failure at young age. Timely identification of HCM patients and initiation of proper treatment requires knowledge of the various manifestations of HCM. We describe the case of a 60-year-old female HCM patient and the four clinical stages of HCM with corresponding complications and treatment options.


Assuntos
Cardiomiopatia Hipertrófica/genética , Morte Súbita Cardíaca/etiologia , Feminino , Genótipo , Insuficiência Cardíaca/genética , Humanos , Pessoa de Meia-Idade , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA