Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Water Resour Res ; 56(7)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33958831

RESUMO

Across South Asia, millions of villagers have reduced their exposure to high-arsenic (As) groundwater by switching to low-As wells. Isotopic tracers and flow modeling are used in this study to understand the groundwater flow system of a semi-confined aquifer of Pleistocene (>10 kyr) age in Bangladesh that is generally low in As but has been perturbed by massive pumping at a distance of about 25 km for the municipal water supply of Dhaka. A 10- to 15-m-thick clay aquitard caps much of the intermediate aquifer (>40- to 90-m depth) in the 3-km2 study area, with some interruptions by younger channel sand deposits indicative of river scouring. Hydraulic heads in the intermediate aquifer below the clay-capped areas are 1-2 m lower than in the high-As shallow aquifer above the clay layer. In contrast, similar heads in the shallow and intermediate aquifer are observed where the clay layer is missing. The head distribution suggests a pattern of downward flow through interruptions in the aquitard and lateral advection from the sandy areas to the confined portion of the aquifer. The interpreted flow system is consistent with 3H-3He ages, stable isotope data, and groundwater flow modeling. Lateral flow could explain an association of elevated As with high methane concentrations within layers of gray sand below certain clay-capped portions of the Pleistocene aquifer. An influx of dissolved organic carbon from the clay layer itself leading to a reduction of initially orange sands has also likely contributed to the rise of As.

2.
Water Resour Res ; 54(10): 8160-8173, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30906078

RESUMO

Well testing in the floodplain of the Brahmaputra River in Golaghat and Jorhat districts of Assam, India, shows that groundwater arsenic (As) concentrations increase with distance from the river. To establish the origin of this pattern, an additional 900 wells <60 m deep were tested for As and 9 sites were drilled along a 35-km transect perpendicular to the river. The field data show no relation between groundwater As concentrations ranging from <1 to 660 µg/L along the transect and (a) As concentrations of <1-5 mg/kg in cuttings of aquifer sand recovered while drilling or (b) the degree of reduction of iron oxides in these cuttings. The drilling indicates, however, a marked increase in the thickness of a clay layer capping the aquifer starting from <1-5 m near the river to over 60 m at the most distant site towards the base of the Naga foothills. Organic radiocarbon ages of 18-46 kyr obtained from all but one of 13 clay samples indicate pre-Holocene deposition of the underlying sands across the entire transect. Radiocarbon ages of dissolved inorganic carbon of 0.2, 4.7, and 17.8 kyr were measured in groundwater from 3 monitoring wells installed to 30-60 m depth at distances of 10, 20, and 40 km from the river, respectively. A conceptual groundwater flow model consistent with monitored heads and groundwater ages suggests that thick clay layers capping the aquifer further from the river inhibited flushing of the aquifer and, as a result, preserved higher As levels in groundwater.

3.
J Water Sanit Hyg Dev ; 7(2): 331-339, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966785

RESUMO

This study considers potential policy responses to the still very high levels of exposure to arsenic (As) caused by drinking water from shallow tubewells in rural Bangladesh. It examines a survey of 4,109 households in 76 villages of Araihazar upazila conducted two years after a national testing campaign swept through the area. The area is adjacent to the region where a long-term study was initiated in 2000 and where households are periodically reminded of health risks associated with well-water elevated in As. Results confirm that testing spurs switching away from unsafe wells, although the 27% fraction who switched was only about half of that in the long-term study area. By village, the fraction of households that switched varied with the availability of safe wells and the distance from the long-term study area. Lacking follow-up testing, two years only after the campaign 21% of households did not know the status of their well and 21% of households with an unsafe well that switched did so to an untested well. Well testing is again urgently needed in Bangladesh and should be paired with better ways to raise awareness and the installation of additional deep community wells.

4.
Sci Total Environ ; 595: 63-71, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28388451

RESUMO

Recent studies have demonstrated that the supply of relatively young organic carbon stimulates the release of arsenic to groundwater in Bangladesh. This study explores the potential role of human and livestock waste as a significant source of this carbon in a densely populated rural area with limited sanitation. Profiles of aquifer sediment samples were analyzed for phytosterols and coprostanol to assess the relative contributions of plant-derived and human/livestock waste-derived organic carbon at two well-characterized sites in Araihazar. Coprostanol concentrations increased with depth from non-detection (<10m at Site B and <23m at Site F) to maxima of 1.3 and 0.5ng/g in aquifer sands recovered from 17m (Site B) and 26m (Site F), respectively. The commonly used sewage contamination index ([5ß-coprostanol]/([5α-cholestanol]+[5ß-coprostanol])) exceeds 0.7 between 12 and 19m at Site B and between 24 and 26m at Site F, indicating input of human/livestock waste to these depths. Urine/fecal input within the same depth range is supported by groundwater Cl/Br mass ratios >1000 compared to Cl/Br <500 at depths >50m. Installed tube wells in the area's study sites may act as a conduit for DOC and specifically human/livestock waste into the aquifer during flood events. The depth range of maximum input of human/livestock waste indicated by these independent markers coincides with the highest dissolved Fe (10-20mg/L) and As (200-400µg/L) concentrations in groundwater at both sites. The new findings suggest that the oxidation of human/livestock waste coupled to the reductive dissolution of iron-(oxy)-hydroxides and/or arsenate may enhance groundwater contamination with As.

5.
Appl Geochem ; 77: 167-177, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28239232

RESUMO

Reductive dissolution of iron oxyhydroxides and reduction of arsenic are often invoked as leading causes of high dissolved As levels in shallow groundwater of Bangladesh. The second of these assumptions is questioned here by comparing the behavior As and phosphate (P), a structural analogue for As (V) which also adsorbs strongly to Fe oxyhydroxides but is not subject to reduction. The first line of evidence is provided by a detailed groundwater time-series spanning two years for three wells in the 6-9 m depth range showing removal of As(III) from shallow groundwater during the monsoon without of loss of P. The data indicate a loss of ~90% of the dissolved As from groundwater in the intermediate well relative to a level of 3 µmol/L As predicted by conservative mixing between groundwater sampled from the shallower and the deeper well. In contrast, P concentrations of ~30 µmol/L in the intermediate well closely match the prediction from conservative mixing. Reduction therefore appears to inhibit the release of As to groundwater at this site relative to P instead of enhancing it. A re-analysis of existing groundwater As and P data from across the country provides a broader context for this finding and confirms that, without reduction, elevated concentrations of As would probably be even more widespread in shallow aquifers of Bangladesh. Without providing definite proof, X-ray absorption spectroscopy of sediment from the time-series site and elsewhere suggests that the loss of As from groundwater may be coupled to precipitation of As sulfide. Further study is needed to assess the implications of these observations for shallow aquifers that have been subjected to increased withdrawals for irrigation in recent decades.

6.
Environ Sci Technol ; 50(14): 7353-63, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27333443

RESUMO

The sources of reduced carbon driving the microbially mediated release of arsenic to shallow groundwater in Bangladesh remain poorly understood. Using radiocarbon analysis of phospholipid fatty acids (PLFAs) and potential carbon pools, the abundance and carbon sources of the active, sediment-associated, in situ bacterial communities inhabiting shallow aquifers (<30 m) at two sites in Araihazar, Bangladesh, were investigated. At both sites, sedimentary organic carbon (SOC) Δ(14)C signatures of -631 ± 54‰ (n = 12) were significantly depleted relative to dissolved inorganic carbon (DIC) of +24 ± 30‰ and dissolved organic carbon (DOC) of -230 ± 100‰. Sediment-associated PLFA Δ(14)C signatures (n = 10) at Site F (-167‰ to +20‰) and Site B (-163‰ to +21‰) were highly consistent and indicated utilization of carbon sources younger than the SOC, likely from the DOC pool. Sediment-associated PLFA Δ(14)C signatures were consistent with previously determined Δ(14)C signatures of microbial DNA sampled from groundwater at Site F indicating that the carbon source for these two components of the subsurface microbial community is consistent and is temporally stable over the two years between studies. These results demonstrate that the utilization of relatively young carbon sources by the subsurface microbial community occurs at sites with varying hydrology. Further they indicate that these young carbon sources drive the metabolism of the more abundant sediment-associated microbial communities that are presumably more capable of Fe reduction and associated release of As. This implies that an introduction of younger carbon to as of yet unaffected sediments (such as those comprising the deeper Pleistocene aquifer) could stimulate microbial communities and result in arsenic release.


Assuntos
Arsênio , Carbono , Bangladesh , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Fosfolipídeos , Poluentes Químicos da Água
7.
J Water Sanit Hyg Dev ; 6(1): 142-150, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27087915

RESUMO

Community wells that extend deeper than most private wells are crucial for reducing exposure to groundwater arsenic (As) in rural Bangladesh. This study evaluates the impact on access to safe drinking water of 915 such intermediate (90-150 m) and deep (>150 m) wells across a 180 km2 area where a total of 48,790 tubewells were tested with field kits in 2012-13. Half the shallow private wells meet the Bangladesh standard of 50 µg/L for As in drinking water, whereas 92% of the intermediate and deep wells meet the more restrictive World Health Organization guideline for As in drinking water of 10 µg/L. As a proxy for water access, distance calculations show that 29% of shallow wells with >50 µg/L As are located within walking distance (100 m) of at least one of the 915 intermediate or deep wells. Similar calculations for a hypothetical more even distribution of deep wells show that 74% of shallow wells with >50 µg/L As could have been located within 100 m of the same number deep wells. These observations and well-usage data suggest that community wells in Araihazar, and probably elsewhere in Bangladesh, were not optimally allocated by the government because of elite capture.

8.
Ground Water ; 54(6): 871-877, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015264

RESUMO

One of the mainstays of mitigation to reduce the exposure of the rural population of Bangladesh to arsenic (As) from private, mostly <90-m deep wells over the past 15 years has been the installation of over 300,000 deeper community wells. A comprehensive testing campaign previously conducted across a 180 km2 of area of Bangladesh identified 9 out of total of 927 wells >90 m deep that contained >50 µg/L arsenic. We show here that for five of these nine wells, conductivity profiles obtained after spiking the well bore with salt indicate a shallow leak that could explain the high As in the well water. In two of the five leaky wells, the presence of additional screens at the depth of the leak was documented with a downhole camera. The downhole camera did not detect anomalies in the construction of the remaining three leaky wells or in the four wells that did not leak. The four wells that did not leak were all >150-m deep and located in two villages separated by less than 500 m. Excluding these two villages and a handful of leaky wells, the results indicate an aquifer that is consistently low in As over a sizeable area at depths >90 m. Isolated cases of public wells that are elevated in As that have been reported elsewhere in Bangladesh may therefore reflect improper installation rather than actual contamination of the deep aquifer.


Assuntos
Arsênio , Abastecimento de Água , Bangladesh , Água Subterrânea , Humanos , Poluentes Químicos da Água
9.
J Hydrol (Amst) ; 539: 674-686, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28966395

RESUMO

Sandy aquifers deposited >12,000 years ago, some as shallow as 30 m, have provided a reliable supply of low-arsenic (As) drinking water in rural Bangladesh. This study concerns the potential risk of contaminating these aquifers in areas surrounding the city of Dhaka where hydraulic heads in aquifers >150 m deep have dropped by 70 m in a few decades due to municipal pumping. Water levels measured continuously from 2012 to 2014 in 12 deep (>150m), 3 intermediate (90-150 m) and 6 shallow (<90 m) community wells, 1 shallow private well, and 1 river piezometer show that the resulting drawdown cone extends 15-35 km east of Dhaka. Water levels in 4 low-As community wells within the 62-147 m depth range closest to Dhaka were inaccessible by suction for up to a third of the year. Lateral hydraulic gradients in the deep aquifer system ranged from 1.7×10-4 to 3.7×10-4 indicating flow towards Dhaka throughout 2012-2014. Vertical recharge on the edge of the drawdown cone was estimated at 0.21±0.06 m/yr. The data suggest that continued municipal pumping in Dhaka could eventually contaminate some relatively shallow community wells.

10.
Water Resour Res ; 52(5): 3324-3349, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-28966406

RESUMO

More than 100,000 community wells have been installed in the 150-300 m depth range throughout Bangladesh over the past decade to provide low-arsenic drinking water (<10 µg/L As), but little is known about how aquifers tapped by these wells are recharged. Within a 25 km2 area of Bangladesh east of Dhaka, groundwater from 65 low-As wells in the 35-240 m depth range was sampled for tritium (3H), oxygen and hydrogen isotopes of water (18O/16O and 2H/1H), carbon isotope ratios in dissolved inorganic carbon (DIC, 14C/12C and 13C/12C), noble gases, and a suite of dissolved constituents, including major cations, anions, and trace elements. At shallow depths (<90 m), 24 out of 42 wells contain detectable 3H of up to 6 TU, indicating the presence of groundwater recharged within 60 years. Radiocarbon (14C) ages in DIC range from modern to 10 kyr. In the 90-240 m depth range, however, only 5 wells shallower than 150 m contain detectable 3H (<0.3 TU) and 14C ages of DIC cluster around 10 kyr. The radiogenic helium (4He) content in groundwater increases linearly across the entire range of 14C ages at a rate of 2.5×10-12 ccSTP 4He g-1 yr-1. Within the samples from depths >90 m, systematic relationships between 18O/16O, 2H/1H, 13C/12C and 14C/12C, and variations in noble gas temperatures, suggest that changes in monsoon intensity and vegetation cover occurred at the onset of the Holocene, when the sampled water was recharged. Thus, the deeper low-As aquifers remain relatively isolated from the shallow, high-As aquifer.

11.
Ground Water ; 52 Suppl 1: 195-200, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24898169

RESUMO

We apply fluid-replacement logging in arsenic-contaminated regions of Bangladesh using a low-cost, down-well fluid conductivity logging tool to detect leaks in the cased section of wells. The fluid-conductivity tool is designed for the developing world: it is lightweight and easily transportable, operable by one person, and can be built for minimal cost. The fluid-replacement test identifies leaking casing by comparison of fluid conductivity logs collected before and after spiking the wellbore with a sodium chloride tracer. Here, we present results of fluid-replacement logging tests from both leaking and non-leaking casing from wells in Araihazar and Munshiganj, Bangladesh, and demonstrate that the low-cost tool produces measurements comparable to those obtained with a standard geophysical logging tool. Finally, we suggest well testing procedures and approaches for preventing casing leaks in Bangladesh and other developing countries.


Assuntos
Arsênio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Poços de Água/análise , Bangladesh , Movimentos da Água
12.
Adv Water Resour ; 63: 120-130, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24821993

RESUMO

Drinking water wells indiscriminatingly placed adjacent to fecal contaminated surface water represents a significant but difficult to quantify health risk. Here we seek to understand mechanisms that limit the contamination extent by scaling up bacterial transport results from the laboratory to the field in a well constrained setting. Three pulses of E. coli originating during the early monsoon from a freshly excavated pond receiving latrine effluent in Bangladesh were monitored in 6 wells and modeled with a two-dimensional (2-D) flow and transport model conditioned with measured hydraulic heads. The modeling was performed assuming three different modes of interaction of E. coli with aquifer sands: 1) irreversible attachment only (best-fit ki=7.6 day-1); 2) reversible attachment only (ka=10.5 and kd=0.2 day-1); and 3) a combination of reversible and irreversible modes of attachment (ka=60, kd=7.6, ki=5.2 day-1). Only the third approach adequately reproduced the observed temporal and spatial distribution of E. coli, including a 4-log10 lateral removal distance of ∼9 m. In saturated column experiments, carried out using aquifer sand from the field site, a combination of reversible and irreversible attachment was also required to reproduce the observed breakthrough curves and E. coli retention profiles within the laboratory columns. Applying the laboratory-measured kinetic parameters to the 2-D calibrated flow model of the field site underestimates the observed 4-log10 lateral removal distance by less than a factor of two. This is promising for predicting field scale transport from laboratory experiments.

13.
Bull World Health Organ ; 89(7): 521-7, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21734766

RESUMO

OBJECTIVE: To determine whether the installation of deep tube wells to reduce exposure to groundwater arsenic in rural Bangladesh had an effect on the incidence of childhood diarrhoeal disease. METHODS: Episodes of diarrhoeal disease in children aged under 5 years that occurred on one specified day each month between 2005 and 2006 were reported to community health workers for six rural villages. A geographical information system containing details of household water use and sanitation in the villages was built using data obtained by a global positioning system survey. The information system also included health, spatial and demographic data. A field survey was carried out to determine whether households obtained drinking water from deep tube wells installed in 2005. The effect of deep tube well use on the incidence of childhood diarrhoea was assessed using a random effects negative binomial regression model. FINDINGS: The risk of childhood diarrhoea was 46% lower in the 179 households that used a deep tube well than in the 364 that used a shallow tube well (P=0.032). Neither socioeconomic status, latrine density, population density nor study year had a significant influence on disease risk. The incidence of childhood diarrhoea declined dramatically between 2005 and 2006, irrespective of water source. CONCLUSION: The introduction of deep tube wells to reduce arsenic in drinking water in rural Bangladesh had the additional benefit of lowering the incidence of diarrhoea among young children.


Assuntos
Diarreia/prevenção & controle , Exposição Ambiental/prevenção & controle , Poços de Água , Intoxicação por Arsênico/prevenção & controle , Bangladesh , Pré-Escolar , Humanos , População Rural , Poluentes Químicos da Água , Abastecimento de Água
14.
Nat Geosci ; 4(11): 793-798, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22308168

RESUMO

Drinking shallow groundwater with naturally elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, growing reliance on deep (>150 m) groundwater has lowered exposure. In the most affected districts of Bangladesh, shallow groundwater concentrations average 100 to 370 µg L(-1), while deep groundwater is typically < 10 µg L(-1). Groundwater flow simulations have suggested that, even when deep pumping is restricted to domestic use, deep groundwater in some areas of the Bengal Basin is at risk of contamination. However, these simulations have neglected the impedance of As migration by adsorption to aquifer sediments. Here we quantify for the first time As sorption on deeper sediments in situ by replicating the intrusion of shallow groundwater through injection of 1,000 L of deep groundwater modified with 200 µg L(-1) of As into a deeper aquifer. Arsenic concentrations in the injected water were reduced by 70% due to adsorption within a single day. Basin-scale modelling indicates that while As adsorption extends the sustainable use of deep groundwater, some areas remain vulnerable; these areas can be prioritized for management and monitoring.

15.
Sci Total Environ ; 408(19): 4185-93, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20576285

RESUMO

The transfer of arsenic to rice grains is a human health issue of growing relevance in regions of southern Asia where shallow groundwater used for irrigation of paddy fields is elevated in As. In the present study, As and Fe concentrations in soil water and in the roots of rice plants, primarily the Fe plaque surrounding the roots, were monitored during the 4-month growing season at two sites irrigated with groundwater containing approximately 130microgl(-1) As and two control sites irrigated with water containing <15microgl(-1) As. At both sites irrigated with contaminated water, As concentrations in soil water increased from <10microgl(-1) to >1000microgl(-1) during the first five weeks of the growth season and then gradually declined to <10microgl(-1) during the last five weeks. At the two control sites, concentrations of As in soil water never exceeded 40microgl(-1). At both contaminated sites, the As content of roots and Fe plaque rose to 1000-1500mgkg(-1) towards the middle of the growth season. It then declined to approximately 300mgkg(-1) towards the end, a level still well above As concentration of approximately 100mgkg(-1) in roots and plaque measured throughout the growing season at the two control sites. These time series, combined with simple mass balance considerations, demonstrate that the formation of Fe plaque on the roots of rice plants by micro-aeration significantly limits the uptake of As by rice plants grown in paddy fields. Large variations in the As and Fe content of plant stems at two of the sites irrigated with contaminated water and one of the control sites were also recorded. The origin of these variations, particularly during the last month of the growth season, needs to be better understood because they are likely to influence the uptake of As in rice grains.


Assuntos
Arsênio/metabolismo , Ferro/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Poluentes Químicos da Água/metabolismo , Agricultura , Arsênio/análise , Bangladesh , Monitoramento Ambiental , Água Doce/química , Ferro/análise , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Solo/análise , Poluentes do Solo/análise , Tempo , Poluentes Químicos da Água/análise
16.
J Contam Hydrol ; 99(1-4): 97-111, 2008 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-18467001

RESUMO

Samples were collected every 2-4 weeks from a set of 37 monitoring wells over a period of 2-3 years in Araihazar, Bangladesh, to evaluate the temporal variability of groundwater composition for As and other constituents. The monitoring wells are grouped in 6 nests and span the 5-91 m depth range. Concentrations of As, Ca, Fe, K, Mg, Mn, Na, P, and S were measured by high-resolution ICPMS with a precision of 5% or better; concentrations of Cl were measured by ion chromatography. In shallow wells <30 m deep, As and P concentrations generally varied by <30%, whereas concentrations of the major ions (Na, K, Mg, Ca and Cl) and the redox-sensitive elements (Fe, Mn, and S) varied over time by up to +/-90%. In wells tapping the deeper aquifers >30 m often below clay layers concentrations of groundwater As were much lower and varied by <10%. The concentrations of major cations also varied by <10% in these deep aquifers. In contrast, the concentration of redox-sensitive constituents Fe, S, and Mn in deep aquifers varied by up to 97% over time. Thus, strong decoupling between variations in As and Fe concentrations is evident in groundwaters from shallow and deep aquifers. Comparison of the time series data with groundwater ages determined by (3)H/(3)He and (14)C dating shows that large seasonal or inter-annual variations in major cation and chloride concentrations are restricted to shallow aquifers and groundwater recharged <5 years ago. There is no corresponding change in As concentrations despite having significant variations of redox sensitive constituents in these very young waters. This is attributed to chemical buffering due to rapid equilibrium between solute and solid As. At two sites where the As content of groundwater in existing shallow wells averages 102 microg/L (range: <5 to 648 microg/L; n=118) and 272 microg/L (range: 10 to 485 microg/L; n=65), respectively, a systematic long-term decline in As concentrations lends support to the notion that flushing may slowly deplete an aquifer of As. Shallow aquifer water with >5 years (3)H/(3)He age show a constant As:P molar ratio of 9.6 over time, suggesting common mechanisms of mobilization.


Assuntos
Arsênio/análise , Monitoramento Ambiental , Água Doce/química , Poluentes Químicos da Água/análise , Abastecimento de Água , Bangladesh , Água Doce/análise , Abastecimento de Água/análise , Abastecimento de Água/normas
17.
Environ Sci Technol ; 42(7): 2283-8, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18504954

RESUMO

Whereas serious health consequences of widespread consumption of groundwater elevated in As have been documented in several South Asian countries, the mechanisms responsible for As mobilization in reducing aquifers remain poorly understood. We document here a previously unrecognized and consistent relationship between dissolved As concentrations in reducing groundwater and the phosphate-mobilizable As content of aquifer sediment for a set of precisely depth-matched samples from across Bangladesh. The relationship holds across nearly 3 orders of magnitude in As concentrations and suggests that regional as well as local patterns of dissolved As in shallow groundwater are set by the solid phase according to a remarkably constant ratio of approximately 250 microg/L dissolved As per 1 mg/kg P-mobilizable As. We use this relationship in a simple model of groundwater recharge to propose that the distribution of groundwater As in shallow aquifers of the Bengal Basin could primarily reflect the different flushing histories of sand formations deposited in the region over the past several thousand years.


Assuntos
Arsênio/análise , Geologia , Poluentes Químicos da Água/análise , Ásia , Sedimentos Geológicos/química , Fenômenos Geológicos , Ferro/análise , Oxirredução
18.
J Contam Hydrol ; 97(1-2): 27-41, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18262680

RESUMO

Chlorofluorocarbons CFC-11 (CCl(3)F), CFC-12 (CCl(2)F(2)), and CFC-113 (CCl(2)F-CClF(2)) are used in hydrology as transient tracers under the assumption of conservative behavior in the unsaturated and saturated soil zones. However, laboratory and field studies have shown that these compounds are not stable under anaerobic conditions. To determine the degradation rates of CFCs in a tropical environment, atmospheric air, unsaturated zone soil gas, and anoxic groundwater samples were collected in Araihazar upazila, Bangladesh. Observed CFC concentrations in both soil gas and groundwater were significantly below those expected from atmospheric levels. The CFC deficits in the unsaturated zone can be explained by gas exchange with groundwater undersaturated in CFCs. The CFC deficits observed in (3)H/(3)He dated groundwater were used to estimate degradation rates in the saturated zone. The results show that CFCs are degraded to the point where practically no (<5%) CFC-11, CFC-12, or CFC-113 remains in groundwater with (3)H/(3)He ages above 10 yr. In groundwater sampled at our site CFC-11 and CFC-12 appear to degrade at similar rates with estimated degradation rates ranging from approximately 0.25 yr(-1) to approximately 6 yr(-1). Degradation rates increased as a function of reducing conditions. This indicates that CFC dating of groundwater in regions of humid tropical climate has to be carried out with great caution.


Assuntos
Biodegradação Ambiental , Clorofluorcarbonetos/química , Poluentes do Solo/química , Poluentes Químicos da Água/química , Bangladesh , Hélio/química , Trítio/química
19.
Appl Geochem ; 23(11): 3019-3028, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19884967

RESUMO

One of the reasons the processes resulting in As release to groundwater in southern Asia remain poorly understood is the high degree of spatial variability of physical and chemical properties in shallow aquifers. In an attempt to overcome this difficulty, a simple device that collects groundwater and sediment as a slurry from precisely the same interval was developed in Bangladesh. Recently published results from Bangladesh and India relying on the needle-sampler are augmented here with new data from 37 intervals of grey aquifer material of likely Holocene age in Vietnam and Nepal. A total of 145 samples of filtered groundwater ranging in depth from 3 to 36 m that were analyzed for As (1-1000 mug/L), Fe (0.01-40 mg/L), Mn (0.2-4 mg/L) and S (0.04-14 mg/L) are compared. The P-extractable (0.01-36 mg/kg) and HCl-extractable As (0.04-36 mg/kg) content of the particulate phase was determined in the same suite of samples, in addition to Fe(II)/Fe ratios (0.2-1.0) in the acid-leachable fraction of the particulate phase. Needle-sampler data from Bangladesh indicated a relationship between dissolved As in groundwater and P-extractable As in the particulate phase that was interpreted as an indication of adsorptive equilibrium, under sufficiently reducing conditions, across 3 orders of magnitude in concentrations according to a distribution coefficient of 4 mL/g. The more recent observations from India, Vietnam and Nepal show groundwater As concentrations that are often an order of magnitude lower at a given level of P-extractable As compared to Bangladesh, even if only the subset of particularly reducing intervals characterized by leachable Fe(II)/Fe >0.5 and dissolved Fe >0.2 mg/L are considered. Without attempting to explain why As appears to be particularly mobile in reducing aquifers of Bangladesh compared to the other regions, the consequences of increasing the distribution coefficient for As between the particulate and dissolved phase to 40 mL/g for the flushing of shallow aquifers of their initial As content are explored.

20.
Health Place ; 13(1): 164-72, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16406833

RESUMO

This study documents the response of 6500 rural households in a 25 km(2) area of Bangladesh to interventions intended to reduce their exposure to arsenic contained in well water. The interventions included public education, posting test results for arsenic on the wells, and installing 50 community wells. Sixty-five percent of respondents from the subset of 3410 unsafe wells changed their source of drinking water, often to new and untested wells. Only 15% of respondents from the subset of safe wells changed their source, indicating that health concerns motivated the changes. The geo-referenced data indicate that distance to the nearest safe well also influenced household responses.


Assuntos
Intoxicação por Arsênico/prevenção & controle , Monitoramento Ambiental/métodos , Comportamentos Relacionados com a Saúde , Educação em Saúde , Conhecimentos, Atitudes e Prática em Saúde , Saúde da População Rural , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Intoxicação por Arsênico/epidemiologia , Bangladesh/epidemiologia , Monitoramento Epidemiológico , Feminino , Sistemas de Informação Geográfica , Política de Saúde , Humanos , Entrevistas como Assunto , Masculino , Avaliação de Programas e Projetos de Saúde , Análise de Regressão , Segurança , Poluentes Químicos da Água/intoxicação , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA