Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 193: 254-261, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944710

RESUMO

Antimicrobial peptides (AMPs) are promising alternatives to antibiotics for treatment of antimicrobial resistant (AMR) bacterial infections. However, their narrow therapeutic window due to in vivo toxicity and limited stability hampers their clinical use. Here, we evaluated encapsulation of two amphiphilic AMPs, SAAP-148 and snake cathelicidin Ab-Cath, into oleyl-modified hyaluronic acid (OL-HA) nanogels to improve their selectivity index. The AMP-loaded OL-HA nanogels ranged 181-206 nm in size with a PDI of 0.2, highly negative surface charge (-47 to -48 mV) and moderate encapsulation efficiency (53-63%). The AMP-loaded OL-HA nanogels displayed similar activity in vitro as AMP solutions against AMR Staphylococcus aureus and Acinetobacter baumannii, with a dose-dependent effect over time. Importantly, the AMP-loaded OL-HA nanogels showed decreased cytotoxicity towards human erythrocytes and primary skin fibroblast, thereby improving the selectivity index of SAAP-148 and Ab-Cath by 2- and 16.8-fold, respectively. Particularly, the selectivity of Ab-Cath-loaded OL-HA nanogels has great clinical potential, with an index that reached ≥ 300 for S. aureus and ≥ 3000 for A. baumannii. These findings indicate that OL-HA nanogels are a promising drug delivery system to reduce the cytotoxicity of AMPs without substantially affecting their antimicrobial activity, thereby increasing their selectivity index and potential as therapeutics to combat AMR bacterial infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Infecções Bacterianas , Humanos , Nanogéis , Peptídeos Catiônicos Antimicrobianos/farmacologia , Ácido Hialurônico , Peptídeos Antimicrobianos , Staphylococcus aureus , Antibacterianos/farmacologia
2.
J Innate Immun ; 15(1): 724-738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37725929

RESUMO

Synthetic antibacterial and anti-biofilm peptide (SAAP)-148 was developed to combat bacterial infections not effectively treatable with current antibiotics. SAAP-148 is highly effective against antimicrobial-resistant bacteria without inducing resistance; however, challenges for further development of SAAP-148 include its cytotoxicity and short circulation half-life. To circumvent these drawbacks, a library of SAAP-148 linked to polyethylene glycol (PEG) groups of various lengths was synthesized and screened for in vitro antibacterial activity and hemolytic activity. Results indicated that PEGylated SAAP-148 variants combine antibacterial activities with reduced hemolysis compared to SAAP-148. Interestingly, proinflammatory immunomodulatory activities of SAAP-148 were enhanced upon C-terminal PEGylation, with SAAP-148-PEG27 showing the most effect. SAAP-148-PEG27 enhanced SAAP-148's capacity to chemoattract human neutrophils and was able to more efficiently (re)direct M-CSF-induced monocyte-macrophage differentiation toward type 1 macrophages as opposed to SAAP-148. Furthermore, dendritic cells with a stronger mature expression profile were produced if monocytes were exposed to SAAP-148-PEG27 during monocyte-immature dendritic cell differentiation in comparison to SAAP-148. Parameters that influenced the immunomodulatory activities of the peptide-PEG conjugate include (i) the length of the PEG group, (ii) the position of PEG conjugation, and (iii) the peptide sequence. Together, these results indicate that SAAP-148-PEG27 is highly effective in redirecting monocyte-macrophage differentiation toward a proinflammatory phenotype and promoting monocyte-mature dendritic cell development. Therefore, SAAP-148-PEG27 may be a promising agent to modulate inadequate immune responses in case of tumors and chronically infected wounds.


Assuntos
Antibacterianos , Monócitos , Humanos , Antibacterianos/farmacologia , Macrófagos , Sequência de Aminoácidos , Imunidade
4.
Pharmaceutics ; 15(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36839751

RESUMO

Chronic wound infections colonized by bacteria are becoming more difficult to treat with current antibiotics due to the development of antimicrobial resistance (AMR) as well as biofilm and persister cell formation. Synthetic antibacterial and antibiofilm peptide (SAAP)-148 is an excellent alternative for treatment of such infections but suffers from limitations related to its cationic peptidic nature and thus instability and possible cytotoxicity, resulting in a narrow therapeutic window. Here, we evaluated SAAP-148 encapsulation in nanogels composed of octenyl succinic anhydride (OSA)-modified hyaluronic acid (HA) to circumvent these limitations. SAAP-148 was efficiently (>98%) encapsulated with high drug loading (23%), resulting in monodispersed anionic OSA-HA nanogels with sizes ranging 204-253 nm. Nanogel lyophilization in presence of polyvinyl alcohol maintained their sizes and morphology. SAAP-148 was sustainedly released from lyophilized nanogels (37-41% in 72 h) upon reconstitution. Lyophilized SAAP-148-loaded nanogels showed similar antimicrobial activity as SAAP-148 against planktonic and biofilm-residing AMR Staphylococcus aureus and Acinetobacter baumannii. Importantly, formulated SAAP-148 showed reduced cytotoxicity against human erythrocytes, primary human skin fibroblasts and human keratinocytes. Additionally, lyophilized SAAP-148-loaded nanogels eradicated AMR S. aureus and A. baumannii colonizing a 3D human epidermal model, without inducing any cytotoxicity in contrast to SAAP-148. These findings indicate that OSA-HA nanogels increase SAAP-148's therapeutic potential for treatment of skin wound infections.

5.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769188

RESUMO

Synthetic antimicrobial and antibiofilm peptide (SAAP-148) commits significant antimicrobial activities against antimicrobial resistant (AMR) planktonic bacteria and biofilms. However, SAAP-148 is limited by its low selectivity index, i.e., ratio between cytotoxicity and antimicrobial activity, as well as its bioavailability at infection sites. We hypothesized that formulation of SAAP-148 in PLGA nanoparticles (SAAP-148 NPs) improves the selectivity index due to the sustained local release of the peptide. The aim of this study was to investigate the physical and functional characteristics of SAAP-148 NPs and to compare the selectivity index of the formulated peptide with that of the peptide in solution. SAAP-148 NPs displayed favorable physiochemical properties [size = 94.1 ± 23 nm, polydispersity index (PDI) = 0.08 ± 0.1, surface charge = 1.65 ± 0.1 mV, and encapsulation efficiency (EE) = 86.7 ± 0.3%] and sustained release of peptide for up to 21 days in PBS at 37 °C. The antibacterial and cytotoxicity studies showed that the selectivity index for SAAP-148 NPs was drastically increased, by 10-fold, regarding AMR Staphylococcus aureus and 20-fold regarding AMR Acinetobacter baumannii after 4 h. Interestingly, the antibiofilm activity of SAAP-148 NPs against AMR S. aureus and A. baumannii gradually increased overtime, suggesting a dose-effect relationship based on the peptide's in vitro release profile. Using 3D human skin equivalents (HSEs), dual drug SAAP-148 NPs and the novel antibiotic halicin NPs provided a stronger antibacterial response against planktonic and cell-associated bacteria than SAAP-148 NPs but not halicin NPs after 24 h. Confocal laser scanning microscopy revealed the presence of SAAP-148 NPs on the top layers of the skin models in close proximity to AMR S. aureus at 24 h. Overall, SAAP-148 NPs present a promising yet challenging approach for further development as treatment against bacterial infections.


Assuntos
Anti-Infecciosos , Nanopartículas , Humanos , Staphylococcus aureus , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Antibacterianos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos/farmacologia , Bactérias , Nanopartículas/química , Biofilmes
6.
Antibiotics (Basel) ; 11(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35625317

RESUMO

Recently, using a deep learning approach, the novel antibiotic halicin was discovered. We compared the antibacterial activities of two novel bactericidal antimicrobial agents, i.e., the synthetic antibacterial and antibiofilm peptide (SAAP)-148 with this antibiotic halicin. Results revealed that SAAP-148 was more effective than halicin in killing planktonic bacteria of antimicrobial-resistant (AMR) Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus, especially in biologically relevant media, such as plasma and urine, and in 3D human infection models. Surprisingly, SAAP-148 and halicin were equally effective against these bacteria residing in immature and mature biofilms. As their modes of action differ, potential favorable interactions between SAAP-148 and halicin were investigated. For some specific strains of AMR E. coli and S. aureus synergism between these agents was observed, whereas for other strains, additive interactions were noted. These favorable interactions were confirmed for AMR E. coli in a 3D human bladder infection model and AMR S. aureus in a 3D human epidermal infection model. Together, combinations of these two novel antimicrobial agents hold promise as an innovative treatment for infections not effectively treatable with current antibiotics.

7.
Pharmaceutics ; 13(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34834254

RESUMO

Bacterial infections constitute a threat to public health as antibiotics are becoming less effective due to the emergence of antimicrobial resistant strains and biofilm and persister formation. Antimicrobial peptides (AMPs) are considered excellent alternatives to antibiotics; however, they suffer from limitations related to their peptidic nature and possible toxicity. The present review critically evaluates the chemical characteristics and antibacterial effects of lipid and polymeric AMP delivery systems and coatings that offer the promise of enhancing the efficacy of AMPs, reducing their limitations and prolonging their half-life. Unfortunately, the antibacterial activities of these systems and coatings have mainly been evaluated in vitro against planktonic bacteria in less biologically relevant conditions, with only some studies focusing on the antibiofilm activities of the formulated AMPs and on the antibacterial effects in animal models. Further improvements of lipid and polymeric AMP delivery systems and coatings may involve the functionalization of these systems to better target the infections and an analysis of the antibacterial activities in biologically relevant environments. Based on the available data we proposed which polymeric AMP delivery system or coatings could be profitable for the treatment of the different hard-to-treat infections, such as bloodstream infections and catheter- or implant-related infections.

8.
Biochemistry ; 58(6): 763-775, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30513201

RESUMO

Multiple sclerosis (MS) is an autoimmune disorder manifested via chronic inflammation, demyelination, and neurodegeneration inside the central nervous system. The progressive phase of MS is characterized by neurodegeneration, but unlike classical neurodegenerative diseases, amyloid-like aggregation of self-proteins has not been documented. There is evidence that citrullination protects an immunodominant peptide of human myelin oligodendrocyte glycoprotein (MOG34-56) against destructive processing in Epstein-Barr virus-infected B-lymphocytes (EBV-BLCs) in marmosets and causes exacerbation of ongoing MS-like encephalopathies in mice. Here we collected evidence that citrullination of MOG can also lead to amyloid-like behavior shifting the disease pathogenesis toward neurodegeneration. We observed that an immunodominant MOG peptide, MOG35-55, displays amyloid-like behavior upon site-specific citrullination at positions 41, 46, and/or 52. These amyloid aggregates are shown to be toxic to the EBV-BLCs and to dendritic cells at concentrations favored for antigen presentation, suggesting a role of amyloid-like aggregation in the pathogenesis of progressive MS.


Assuntos
Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Linfócitos B/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Amiloide/imunologia , Amiloide/toxicidade , Proteínas Amiloidogênicas/síntese química , Proteínas Amiloidogênicas/imunologia , Proteínas Amiloidogênicas/toxicidade , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos B/virologia , Benzotiazóis/química , Callithrix , Linhagem Celular , Citrulinação/imunologia , Células Dendríticas/metabolismo , Herpesvirus Humano 4 , Humanos , Camundongos Endogâmicos C57BL , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/metabolismo , Esclerose Múltipla Crônica Progressiva/virologia , Glicoproteína Mielina-Oligodendrócito/síntese química , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Agregação Patológica de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA